Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (10): 728-734    DOI: 10.11901/1005.3093.2019.146
  研究论文 本期目录 | 过刊浏览 |
CuO/ZnO复合光催化剂的制备和性能
谢亮1,王平1,李之锋1(),刘德红1,吴瑛2
1. 江西理工大学材料科学与工程学院 赣州 341000
2. 浙江纳巍负离子科技有限公司 杭州 310000
Hydrothermal Synthesis and Photocatalytic Activity of CuO/ZnO Composite Photocatalyst
XIE Liang1,WANG Ping1,LI Zhifeng1(),LIU Dehong1,WU Ying2
1. School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
2. Zhejiang NAVIION Technology Co. , Ltd, Hangzhou 310000, China
引用本文:

谢亮,王平,李之锋,刘德红,吴瑛. CuO/ZnO复合光催化剂的制备和性能[J]. 材料研究学报, 2019, 33(10): 728-734.
Liang XIE, Ping WANG, Zhifeng LI, Dehong LIU, Ying WU. Hydrothermal Synthesis and Photocatalytic Activity of CuO/ZnO Composite Photocatalyst[J]. Chinese Journal of Materials Research, 2019, 33(10): 728-734.

全文: PDF(4745 KB)   HTML
摘要: 

以十六烷基三甲基溴化铵为生长调节剂用一步水热法合成了纳米CuO/ZnO复合光催化剂。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、X 射线光电子能谱仪(XPS)、荧光光谱仪(FL)和紫外-可见光谱仪(UV-Vis)等手段对其表征,在紫外光照射下研究了不同CuO配比的复合光催化剂对目标降解物甲基橙的光催化效果和循环稳定性。结果表明,CuO/ZnO复合光催化剂主要由CuO纳米颗粒和ZnO纳米片组成;引入适量的CuO可调节ZnO 的光吸收性能,提高紫外光催化效率;过量(?7%)的CuO抑制ZnO的紫外光催化效率;CuO/ZnO在光催化过程中具有良好的稳定性。

关键词 复合材料CuO/ZnO光催化甲基橙    
Abstract

Nanocomposites of CuO/ZnO were synthesized with cetyltrimethylammonium bromide as a growth regulator by one-step hydrothermal method. The catalyst was characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), fluorescence spectrometer (FL) and UV-Vis spectrometer (UV-Vis). The photocatalytic effect of the composite photocatalyst with different ratios of CuO to ZnO on the degradation efficiency of methyl orange under ultraviolet light irradiation, and the cyclic stability of the composite photocatalyst were investigated. The results show that CuO/ZnO photocatalysts are mainly composed of CuO nanoparticles and ZnO nanosheets. The proper amount of CuO can effectively adjust the light absorption performance of ZnO and enhance the efficiency of ultraviolet photocatalysis. Excess CuO (?7%) has inhibitory effect on ZnO ultraviolet catalytic efficiency. CuO/ZnO has good stability in the photocatalytic process.

Key wordscomposites    CuO/ZnO    photocatalysis    methyl orange
收稿日期: 2019-03-11     
ZTFLH:  O644  
基金资助:国家自然科学基金(53173104);江西省科技计划项目(20141BBE50019);江西省教育厅项目(GJJ160602)
作者简介: 谢 亮,男,1993年生,硕士生
图1  纯 ZnO、CuO/ZnO和CuO的XRD谱
图2  5%CuO/ZnO的SEM照片和EDS元素分布
图3  空白实验和光催化材料在紫外光辐照下对甲基橙的降解曲线和相应的表观一阶线性拟合曲线
图4  CuO、ZnO和CuO/ZnO的紫外可见吸收光谱和(αhν)2与(hν)的关系
图5  5%CuO/ZnO的光降解循环稳定性
图6  纯ZnO和CuO/ZnO的光致发光光谱
图7  5%CuO/ZnO的XPS全谱以及Zn2p、Cu2p和O1s轨道的XPS窄谱
图 8  CuO/ZnO 复合光催化剂的机理
[1] Zhu L Y, Li H, Liu Z ,et al. Synthesis of the 0D/3D CuO/ZnO heterojunction with enhanced photocatalytic activity [J]. The Journal of Physical Chemistry C, 2018, 122(17): 9531
[2] Zhu M, Zhai C, Qiu L ,et al. New method to synthesize S-doped TiO2 with stable and highly efficient photocatalytic performance under indoor sunlight irradiation [J]. ACS Sustainable Chemistry & Engineering, 2015, 3(12): 3123
[3] Cai J B, Wu X Q, Li S ,et al. Synthesis of TiO2@WO3/Au nanocomposite hollow spheres with controllable size and high visible-light-driven photocatalytic activity [J]. Acs Sustainable Chemistry & Engineering, 2016, 4(3): 1581
[4] Luo J, Zhao A T. Synthesis and photocatalytic properties of cucuribit[6] uril-CdS composite photocatalyst [J]. Journal of the Chinese Ceramic Society, 2017, 45(1): 83
[4] 罗 娟, 赵安婷. 六元瓜环-CdS复合光催化剂的合成及其光催化性能 [J]. 硅酸盐学报, 2017, 45(1): 83
[5] Chen Y, Zhang P, Shang Y H, et al. Controllable synthesis and photocatalytic activity of ZnO nano-cones with different aspect ratio [J]. Chinese Journal of Materials Research, 2017, 31(8): 61
[5] 陈 燕, 张 萍, 尚永辉等. 不同纵横比 ZnO 纳米锥的可控合成及其光催化性能 [J]. 材料研究学报, 2017, 31(8): 61
[6] Zhu S, Chen X, Zuo F,et al. Controllable synthesis of ZnO nanograss with different morphologies and enhanced performance in dye-sensitized solar cells [J]. Journal of Solid State Chemistry, 2013, 197(1): 69
[7] Fang X M, Zeng Z, Gao S Yet al. Low-temperature preparation and photocatalytic activity of eco-friendly nanocone forest-like arrays of ZnO [J]. Chinese Journal of Materials Research, 2018, 32(12): 945
[7] 方向明, 曾 值, 高世勇等. ZnO纳米锥丛林阵列的低温制备和光催化性能 [J]. 材料研究学报, 2018, 32(12): 945
[8] Tripathy N, Ahmad R, H Kuket al. Rapid methyl orange degradation using porous ZnO spheres photocatalyst [J]. Journal of Photochemistry and Photobiology B: Biology, 2016, 161: 312
[9] Huang N, Shu J, Wang Zet al. One-step pyrolytic synthesis of ZnO nanorods with enhanced photocatalytic activity and high photostability under visible light and UV light irradiation [J]. Journal of Alloys & Compounds, 2015, 648: 919
[10] Ba-Abbad M M, Kadhum A A, Mohamad A B ,et al. Visible light photocatalytic activity of Fe(3+)-doped ZnO nanoparticle prepared via sol-gel technique [J]. Chemosphere, 2013, 91(11): 1604
[11] Cerrato E, Gionco C, Berruti I ,et al. Rare earth ions doped ZnO: Synthesis, characterization and preliminary photoactivity assessment [J]. Journal of Solid State Chemistry, 2018, 264: 42
[12] Zong X, Sun C, Yu H ,et al. Activation of photocatalytic water oxidation on N-doped ZnO bundle-like nanoparticles under visible light [J]. Journal of Physical Chemistry C, 2013, 117(10): 4937
[13] Li R, Yu L M, Yan X F, et al. Morphology-controlled preparation and photocatalytic properties of Cu2O/ZnO microstructures [J]. Chemical Journal of Chinese Universities, 2017, 38(2): 267
[13] 李 如, 于良民, 闫雪峰等. Cu2O/ZnO的形貌可控制备及光催化性能 [J]. 高等学校化学学报, 2017, 38(2): 267
[14] Han Z Y, Li Y J, Lin X ,et al. Preparation and photoelectrocatalytic performance of Fe2O3/ZnO composite electrode loading on conductive glass [J]. Chemical Journal of Chinese Universities, 2018, 39(4): 771
[14] 韩志英, 李佑稷, 林 晓等. 导电玻璃负载Fe2O3/ZnO 复合光电极的制备及光电催化性能 [J]. 高等学校化学学报, 2018, 39(4): 771
[15] He X, Liu H R, Dong H L, et al. Synthesis and photocatalytic properties of ZnO/In2O3 heteronanostructures [J]. Journal of Inorganic Materials, 2014, 29(3): 264
[15] 何 霞, 刘海瑞, 董海亮等. ZnO/In2O3纳米异质结的合成及其光催化性能的研究 [J]. 无机材料学报, 2014, 29(3): 264
[16] Liu Z L, Deng J C, Deng J J ,et al. Fabrication and photocatalysis of CuO/ZnO nano-composites via a new method [J]. Materials Science & Engineering B, 2008, 150(2): 99
[17] Asahi R, Morikawa T, Ohwaki T ,et al. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science, 2001, 293(5528): 269
[18] Hameed A, Gombac V, Montini T ,et al. Synthesis, characterization and photocatalytic activity of NiO-Bi2O3 nanocomposites [J]. Chemical Physics Letters, 2009, 472(4-6): 212
[19] Yu J J, Liao B, Zhang X ,et al. Fabrication of CuO nanowires on copper foams by thermal oxidation and investigation of their photocatalytic properties [J]. Chinese Journal of Rare Metals, 2016, 40(10): 1021
[19] 于晶晶, 廖 斌, 张 旭等. 热氧化法在泡沫铜上制备 CuO 纳米线及其光催化性能研究 [J]. 稀有金属, 2016, 40(10): 1021
[20] Li G., Dimitrijevic N.M., Chen L. ,et al. Role of surface/interfacial Cu2+ sites in the photocatalytic activity of coupled CuO-TiO2 nanocomposites [J]. Journal of Physical Chemistry C, 2008, 112(48): 19040
[21] Zhang J, Chen T, Yu J ,et al. Enhanced photocatalytic activity of flowerlike CuO-ZnO nanocomposites synthesized by one-step hydrothermal method [J]. Journal of Materials Science Materials in Electronics, 2016, 27(10): 1
[22] Mansournia M, Ghaderi L. CuO@ZnO core-shell nanocomposites: Novel hydrothermal synthesis and enhancement in photocatalytic property [J]. Journal of Alloys and Compounds, 2016: S0925838816326676.
[23] Hui F, Yanxia G, Tong W ,et al. Biomimetic synthesis of urchin-like CuO/ZnO nanocomposite with excellent photocatalytic activity [J]. New Journal of Chemistry, 2018, 42: 12779
[24] Lu H B, Li H, Liao L ,et al. Low-temperature synthesis and photocatalytic properties of ZnO nanotubes by thermal oxidation of Zn nanowires [J]. Nanotechnology, 2008, 19(4): 045605
[25] Butler M A, Ginley D S, Eibschutz M. Photoelectrolysis with YFeO3 electrodes [J]. Journal of Applied Physics, 1977, 48(7): 3070
[26] Mohamed Reda G, Fan H, Tian H. Room-temperature solid state synthesis of Co3O4/ZnO p-n heterostructure and its photocatalytic activity [J]. Advanced Powder Technology, 2017, 28(3): 953
[27] Mageshwari K, Nataraj D, Pal T ,et al. Improved photocatalytic activity of ZnO coupled CuO nanocomposites synthesized by reflux condensation method [J]. Journal of Alloys and Compounds, 2015, 625: 362
[28] Zheng J, Jiang Z Y, Kuang Q, et al. Shape-controlled fabrication of porous ZnO architectures and their photocatalytic properties [J]. Journal of Solid State Chemistry, 2009, 182(1): 115
[29] Dong G, Du B, Liu L,et al. Synthesis and their enhanced photoelectrochemical performance of ZnO nanoparticle-loaded CuO dandelion heterostructures under solar light [J]. Applied Surface Science, 2017, 399: 86
[30] Xie Y, Xing R, Li Q ,et al. Three-dimensional ordered ZnO-CuO inverse opals toward low concentration acetone detection for exhaled breath sensing [J]. Sensors and Actuators B: Chemical, 2015, 211: 255
[31] Qi L X, Fei F Q, Li L G ,et al. Syntheses of ZnO nano-arrays and spike-shaped CuO/ZnO heterostructure [J]. Acta Phys. Chim. Sin., 2015, 31(4): 783
[32] Sungmook J, Kijung Y. Fabrication of CuO-ZnO nanowires on a stainless steel mesh for highly efficient photocatalytic applications [J]. Chemical Communications, 2011, 47(9): 2643
[33] Li J, Wang J, Huang L, et al. Photoelectrocatalytic degradation of methyl orange over mesoporous film electrodes [J]. Photochemical and Photobiological Sciences, 2010, 9: 39
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.