Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (11): 874-880    DOI: 10.11901/1005.3093.2017.732
  本期目录 | 过刊浏览 |
透明阻燃纳米纤维素/黏土复合薄膜的制备和性能
明思逸1, 陈港1, 严俊芳1, 何嘉皓1, 朱家添1, 刘映尧1, 方志强1,2()
1 华南理工大学 华南协同创新研究院 制浆造纸工程国家重点实验室 广州 510640
2 华南理工大学 国家金属材料近净成形工程技术研究中心 金属材料高效近净成形技术与装备教育部重点实验室 广州 510640
Preparation and Properties of a Transparent and Fire-retardant Nanocomposite Film of NFC/Nanoclay
Siyi MING1, Gang CHEN1, Junfang YAN1, Jiahao HE1, Jiatian ZHU1, Yingyao LIU1, Zhiqiang FANG1,2()
1 State Key Laboratory of Pulp and Paper Engineering, South China Institution of Collaborative Innovation, South China University of Technology, Guangzhou 510640, China
2 National Engineering Research Center of Neat-Net-Shape Forming for Metallic Materials, The Key Laboratory of High Efficient Neat-Net-Shape Forming Technology and Equipments for Metallic Materials, Ministry of Education, South China University of Technology, Guangzhou 510640, China
引用本文:

明思逸, 陈港, 严俊芳, 何嘉皓, 朱家添, 刘映尧, 方志强. 透明阻燃纳米纤维素/黏土复合薄膜的制备和性能[J]. 材料研究学报, 2018, 32(11): 874-880.
Siyi MING, Gang CHEN, Junfang YAN, Jiahao HE, Jiatian ZHU, Yingyao LIU, Zhiqiang FANG. Preparation and Properties of a Transparent and Fire-retardant Nanocomposite Film of NFC/Nanoclay[J]. Chinese Journal of Materials Research, 2018, 32(11): 874-880.

全文: PDF(3050 KB)   HTML
摘要: 

先将多层结构的黏土剥离成单片层黏土以提高黏土厚度的均匀性,再借助纳米纤维素在水中优异的空间位阻效应提高黏土在干燥过程中的稳定性以实现黏土在薄膜厚度方向上的有序堆叠,提高纳米纤维素/黏土复合薄膜的透光率,制备了一种透明、阻燃纳米纤维素/黏土复合薄膜。使用SEM、XRD、AFM、TGA等仪器分析和表征了复合薄膜结构、热稳定性和阻燃性。结果表明,当黏土与纳米纤维素质量比为1:1时复合薄膜的透光率达到90%,极限氧指数>60%。

关键词 材料表面与界面纳米复合薄膜纳米纤维素纳米黏土透明阻燃    
Abstract

A transparent and fire-retardant nanocomposite film of NFC/nanoclay was prepared in order to realize the compatibility between high transparency and fire retardance. Firstly, the clay was exfoliated from lamellar structure into monolayer structure to enhance its uniformity in thickness; secondly, during the fabrication of nanocomposite film, the stability of monolayer clay suspension is enhanced by taking advantage of the excellent steric hindrance of NFC in water. Consequently, the individual monolayer nanoclay is self-assembled into nanocomposite film with well-ordered mortar-and-brick structure, which facilitates the transmission of light through the hybrid film. The structure, thermal stability, and flammability of the nanocomposite film were characterized by means of SEM, XRD, and TGA. The results show that as the mass ratio of monolayer clay to NFC is 1:1, the nanocomposite film exhibits ca 90% transparency and a limiting oxygen index over 60%.

Key wordssurface and interface in the materials    nanocomposite film    nanofibrillated cellulose    nanoclay    transparency    fire retardancy
收稿日期: 2017-12-12     
ZTFLH:  O484  
基金资助:国家自然科学青年科学基金(31700508),广东省自然科学基金-博士启动(2017A030310635),国家金属材料近净成形工程技术研究中心、金属材料高效近净成形技术与装备教育部重点实验室开放基金(2016006)
作者简介:

作者简介 明思逸,男,1994年生,本科生

图1  纳米纤维素分散的单片层黏土的AFM图像和AFM图像中线扫描的高度图
图2  单片层黏土与纳米纤维素质量比为1:1的复合薄膜实物图和黏土粉末与纳米纤维素质量比为1:1的复合薄膜实物照片(薄膜尺寸都为10 cm×10 cm)
图3  复合薄膜横截面的SEM图、复合薄膜表面的SEM图、纯黏土粉末的XRD射线衍射谱以及单黏土与纳米纤维素质量比为1:1的复合薄膜的XRD射线衍射谱
图4  透明纳米纤维素薄膜和透明复合薄膜热稳定性能的表征。纳米纤维素薄膜和单片层黏土与纳米纤维素质量比为1:1的复合薄膜在氮气保护下的热重分析TG曲线(a)和微商热重分析DTG曲线(b)
图5  透明阻燃复合薄膜(单片层黏土与纳米纤维素质量比为1:1,厚度:30 μm)的实时燃烧照片
图6  单片层黏土与纳米纤维素质量比为1:1时,透明阻燃纳米纤维素/黏土复合复合薄膜燃烧后横截面和表面的形貌:低倍数下燃烧后的薄膜横截面SEM图像、燃烧后的薄膜表面SEM图像以及燃烧后薄膜横截面的Si元素分布(黄色边框内红点色代表了Si元素)
[1] Eichhorn S J, Dufresne A, Aranguren M.Review: current international research into cellulose nanofibres and nanocomposites[J]. Journal of Matrials Science, 2010, 45(1): 1
[2] Tang A M, Yao B T, Xu L Q, et al.Synthesis and characterization of nano-crystalline cellulose/cdS opto-electric nano-composites[J]. Chin. J. Mater. Res., 2013, 27(2): 178(唐爱民, 姚邦涛, 许立群等. 纳米纤维素/CdS纳米复合光电材料的制备和性能[J]. 材料研究学报, 2013, 27(2): 178)
[3] Wu P, Yu S H, Liu Z M.Preparation and performance characterization of nanofibrillated cellulose paper with high strength and transparency[J]. Journal of Functional Materials, 2016, (1): 1259)(吴鹏, 余森海, 刘志明. 高强度透明纳米纤维素纸的制备与性能表征[J]. 功能材料, 2016, (1): 1259)
[4] Xu X, Zhou J,Jiang L et al. Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics[J]. Nanoscale, 2016, 8(24): 12294
[5] Nakagaito A N, Nogi M, Yano H et al. Displays from transparent film of natural nanofibers[J]. MRS Bulletin, 2010, 35(3): 214
[6] Liu D T, Xia K F, Cai W H, et al.Investigations about dissolution of cellulose in the 1-allyl-3-alkylimidazolium chloride ionic liquids[J]. Carbohydrate Polymers, 2012, 87(2): 1058
[7] Zhu H, Fang Z, Wang Z, et al.Extreme light management in mesoporous wood cellulose paper for optoelectronics[J]. ACS Na no. 2016, 10(1): 1369
[8] Fang Z, Zhu H, Preston C, et al.Highly transparent and writable wood all-cellulose hybrid nanostructured paper[J]. Journal of Materials Chemistry C., 2013, 1(39): 6191
[9] Walther A, Bjurhager I, Malho J M, et al.Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways[J]. Nano Letters, 2010, 10(8): 2742
[10] Chen G G, Guan Y, Qi X M, et al.Recent progresson flame retardance of polymer/layered silicate nanocompositesn[J]. Journal of Materials Engineering, 2015, 43(8): 104(陈阁谷, 关莹, 亓宪明等. 聚合物/层状硅酸盐纳米复合材料阻燃性研究进展[J]. 材料工程, 2015, 43(8): 104)
[11] Sehaqui H, Kochumalayil J, Liu A, et al.Multifunctional nanoclay hybrids of high toughness, thermal, and barrier performances[J]. ACS Applied Materials & Interfaces, 2013, 5(15): 7613
[12] Liu A, Walther A, Ikkala O, et al.Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions[J]. Biomacromolecules, 2011, 12(3): 633
[13] Carosio F, Kochumalayil J, Fina A, et al.Extreme thermal shielding effects in nanopaper based on multilayers of aligned clay nanoplatelets in cellulose nanofiber matrix[J]. Advanced Materials Interfaces, 2016, 3(19): 1600551
[14] Carosio F, Kochumalayil J, Cuttica F, et al.Oriented clay nanopaper from biobased components mechanisms for superior fire protection properties[J]. ACS Applied Material & Interfaces. 2015, 7(10): 5847
[15] Liu A, Berglund L A.Clay nanopaper composites of nacre-like structure based on montmorrilonite and cellulose nanofibers-Improvements due to chitosan addition[J]. Carbohydrate Polymers., 2012, 87(1): 53
[16] Wu C, Saito T, Fujisawa S, et al.Ultrastrong and high gas-barrier nanocellulose/clay-layered composites[J]. Biomacromolecules, 2012, 13(6): 1927
[17] Liu Y, Yu S, Bergstr?m L.Transparent and flexible nacre-like hybrid films of aminoclays and carboxylated cellulose nanofibrils[J]. Advanced Functional Materials.: 2018, 27(28): 1703277
[18] Ming S, Chen G, Wu Z, et al.Effective dispersion of aqueous clay suspension using carboxylated nanofibrillated cellulose as dispersant[J]. Rsc Advances, 2016, 6(44): 37330
[19] Ming S, Chen G, He J, et al.Highly transparent and self-extinguishing nanofibrillated cellulose-monolayer clay nanoplatelet hybrid films[J]. Langmuir, 2017, 33(34): 8455
[20] Qi Z N, Shang W Y.The Theory and Practice of Polymer /Layered Silicate Composite Materials [M]. Beijing: Polymer Materials and Engineering Publishing Center, 2002(漆宗能, 尚文宇. 聚合物/层状硅酸盐纳米复合材料理论与实践 [M]. 北京: 材料科学与工程出版中心, 2002)
[1] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[5] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[6] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[7] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[8] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[9] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[10] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[11] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.
[12] 李修贤, 邱万奇, 焦东玲, 钟喜春, 刘仲武. α籽晶促进低温反应溅射沉积α-Al2O3薄膜[J]. 材料研究学报, 2022, 36(1): 8-12.
[13] 范金辉, 李鹏飞, 梁晓军, 梁建平, 徐长征, 蒋力, 叶祥熙, 李志军. 镍-不锈钢复合板轧制过程中界面的结合机制[J]. 材料研究学报, 2021, 35(7): 493-500.
[14] 潘颖, 赵红挺. 埃洛石自组装涂层在软质聚氨酯泡沫上的制备及其阻燃抑烟性能[J]. 材料研究学报, 2021, 35(6): 449-457.
[15] 卢壹梁, 杜瑶, 王成, 辛丽, 朱圣龙, 王福会. 纳米Al2O3TiO2改性有机硅涂层对304不锈钢高温氧化行为的影响[J]. 材料研究学报, 2021, 35(6): 458-466.