Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (4): 292-298    DOI: 10.11901/1005.3093.2015.680
  本期目录 | 过刊浏览 |
Cu和Sn对钎焊料4343Al合金组织性能的影响
赵媛媛, 章桢彦, 靳丽, 董杰()
上海交通大学材料科学与工程学院 轻合金精密成型国家工程研究中心 上海 200240
Effect of Cu and Sn Addition on Microstructure and Properties of Brazing Filler 4343 Al Alloy
ZHAO Yuanyuan, ZHANG Zhenyan, JIN Li, DONG Jie*()
National Engineering Research Center of Light Alloy Net Forming, Schools of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
引用本文:

赵媛媛, 章桢彦, 靳丽, 董杰. Cu和Sn对钎焊料4343Al合金组织性能的影响[J]. 材料研究学报, 2016, 30(4): 292-298.
Yuanyuan ZHAO, Zhenyan ZHANG, Li JIN, Jie DONG. Effect of Cu and Sn Addition on Microstructure and Properties of Brazing Filler 4343 Al Alloy[J]. Chinese Journal of Materials Research, 2016, 30(4): 292-298.

全文: PDF(6057 KB)   HTML
摘要: 

通过添加0-1.0%(质量分数)的Cu或Sn来合金化4343合金, 获得一种熔点更低、抗塌陷性能更优良的钎焊材料。熔点测试结果表明, 随Cu或Sn含量的增加, 合金的固相线温度和液相线温度逐渐降低, 添加1.0%的Cu或Sn后合金固相线温度、液相线温度降低10-15℃。微观组织和挤压变形后力学性能研究结果表明, 随Cu或Sn含量的增加, 铸态合金中含Cu的第二相量或Sn颗粒逐渐增多; 热挤压后含Cu第二相趋于溶解, 而Sn促进含Si、Fe第二相溶解; 合金室温抗拉强度逐渐升高, 但延伸率略有降低。模拟钎焊实验结果表明, 添加Cu或Sn可降低4343合金的可钎焊温度, 添加1.0%的Cu或Sn可使钎焊温度降低15-20℃。

关键词 金属材料4343铝合金微合金化熔点钎焊    
Abstract

The 4343 Al-Si alloy is the most widely used brazing filler metal for the multi-layer aluminum clad sheets, which act as radiator fin for aluminum heat exchanger. In this paper, 0-1.0%(mass fraction) Cu or Sn was added to 4343 alloy in order to develop a new brazing filler metal with lower melting point and better collapse resistance. The results show that with the increase of Cu or Sn, the solidus and liquidus of the alloys decrease gradually, and when the Cu or Sn content is increased to 1.0%, the solidus and liquidus will be reduced by 10-15℃ respectively. With the increase of Cu ro Sn content, the Cu bearing intermetallic phases or the Sn particles increase in the cast alloy; after hot extrusion the Cu bearing intermetallic phases dissolve and Sn particles can induce the dissolution of Fe-Si bearing intermetallic phases; the tensile strength increases gradually while the elongations decrease a little. The results of trial brazing show that the addition of Cu or Sn will decrease the brazing temperature, particularly, the brazing temperature can be reduced by more than 15℃ for the filler alloys with 1.0% of Cu or Sn.

Key wordsmetallic materials    4343Al alloy    alloying    melting point    brazing
收稿日期: 2015-11-26     
ZTFLH:  TB331  
作者简介: 本文联系人: 董杰, 研究员
New alloy Cu Si Fe Mn Mg Zn Sn Al
Cu0 0.01 7.98 0.60 0.11 0.02 0.18 - Bal.
Cu0.25(4343) 0.26 8.03 0.63 0.11 0.00 0.19 - Bal.
Cu0.6 0.65 7.96 0.61 0.11 0.00 0.18 - Bal.
Cu1.0 1.12 7.86 0.61 0.11 0.00 0.19 - Bal.
Sn0.1 0.24 7.80 0.57 0.10 0.05 0.19 0.10 Bal.
Sn0.25 0.25 7.97 0.61 0.11 0.03 0.19 0.25 Bal.
Sn0.5 0.24 8.00 0.63 0.11 0.01 0.19 0.53 Bal.
Sn1.0 0.25 7.98 0.65 0.11 0.01 0.19 1.06 Bal.
表1  设计合金的化学成分
图1  添加Cu、Sn的Al-Si合金的铸态微观组织和相
图2  添加Cu、Sn的Al-Si合金的液、固相线温度
图3  Cu和Sn的含量对Al-Si合金力学性能的影响
图4  热挤压合金的纵截面微观组织
图5  热挤压合金的纵截面SEM像和EDS分析
Alloy Holding temperature Brazing temperature
610℃ 605℃ 600℃ 595℃ 590℃ 585℃ 580℃
Cu0 79% 48.2% 15.7% 2% × × × >610℃
Cu0.25 (4343) 100% 79.4% 47.2% 9.2% 2% × × 610℃
Cu0.6 100% 100% 100% 87.3% 61.7% 11.5% 0% 600℃
Cu1.0 100% 100% 100% 100% 89.7% 39.6% 2.1% 595℃
Sn0.1 100% 91.4% 81.3% 0% × × × 610℃
Sn0.25 100% 100% 92% 24.5% 7% × × 605℃
Sn0.5 100% 100% 100% 100% 72.5% 29.7% 10% 595℃
Sn1.0 100% 100% 100% 100% 100% 67.4% 37.0% 590℃
表2  模拟钎焊后界面结合比例
图6  模拟钎焊后界面形貌
1 W. S.Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, Recent development in aluminium alloys for the automotive industry, Materials Science and Engineering A, A280, 37(2000)
doi: 10.1016/S0921-5093(99)00653-X
2 D. M. Turriff, S. F. Corbin, M. Kozdras, Diffusional solidification phenomena in clad aluminum automotive braze sheet, Acta Materialia, 58(4), 1332(2010)
doi: 10.1016/j.actamat.2009.10.037
3 SUN Xinglong, LING Yabiao, Research on sagging resistance of composite brazing aluminum foils, Light Alloy Fabrication Technology, 43(2), 8(2015)
3 (孙兴隆, 凌亚标, 复合钎焊铝箔抗下垂性能的研究进展, 轻合金加工技术, 43(2), 82015))
4 J. S. Yoon, S. H. Lee, M.S. Kim, Fabrication and brazeability of a three layer 4343/3003/4343 aluminum clad sheet by rolling, Journal of Materials Processing Technology, 111, 85(2001)
5 Jea-Sung Ryu, Mok-Soon Kim, Dongsoo Jung, Brazeability of cold rolled three layer Al-7.5Si/Al-1.2Mn-2Zn-(0.04-1.0)Si/Al-7.5Si (wt.%) clad sheets, Journal of Materials Processing Technology, 130-131, 240(2002)
6 S. H. Lee, J. S. Yoon, M. S. Kim, D. Jung, Effects of cold rolling parameters on sagging behavior for three layer Al-Si/Al-Mn(Zn)/Al-Si brazing sheets, Metals and Materials International, 8(3), 227(2002)
doi: 10.1007/BF03186089
7 Jining Qin, Suk-Bong Kang, Jae-Hyung Cho, Sagging mechanisms in the brazing of aluminum heat exchangers, Scripta Materialia, 68(12), 941(2013)
doi: 10.1016/j.scriptamat.2013.02.039
8 Feng Gao, P. Sekulic Dusan, Yiyu Qian, Xin Ma, Residual clad formation and aluminum brazed joint topology prediction, Materials Letters, 57(29), 4592(2003)
doi: 10.1016/S0167-577X(03)00366-5
9 Si Joon Noh, Mok Soon Kim, D. Jung, W. Han J., Don You Byung, Effects of Si content and cold rolling condition on brazeability of Al-Mn-Zn alloy core brazing sheet, Materials Science Forum, 486-487, 415(2005)
doi: 10.4028/www.scientific.net/MSF.486-487.415
10 Yiyou Tu, Zhen Tong, Jianqing Jiang, Effect of microstructure on diffusional solidification of 4343/3005/4343 multi-layer aluminum brazing sheet, Metallurgical and Materials Transactions A, 44(4), 1760(2012)
doi: 10.1007/s11661-012-1550-5
11 J. Lacaze, S. Tierce, C. Lafont M., Y. Thebault, N. Pébère, Study of the microstructure resulting from brazed aluminium materials used in heat exchangers, Materials Science and Engineering A, 413-414, 317(2005)
doi: 10.1016/j.msea.2005.08.187
12 S. Tierce, N. Pébère, C. Blanc, C. Casenave, G. Mankowski, H. Robidou, Corrosion behaviour of brazed multilayer material AA4343/AA3003/AA4343: Influence of coolant parameters, Corrosion Science, 49(12), 4581(2007)
doi: 10.1016/j.corsci.2007.04.013
13 YUAN Ting, TU Yiyou, ZHANG Minda, JIANG Jianqing, Effect of microstructure on sagging resistance of a three-layer aluminum brazed sheet, Transactions of Materials and Heat Treatment, 32(9), 121(2011)
13 (袁婷, 涂益友, 张敏达, 蒋建清, 微观组织对复合钎焊铝箔抗下垂性的影响, 材料热处理学报, 32(9), 121(2011))
14 S. Y. Chang, L. C. Tsao, Y. H. Lei, S. M. Mao, C. H. Huang, Brazing of 6061 aluminum alloy/Ti-6Al-4V using Al-Si-Cu-Ge filler metals, Journal of Materials Processing Technology, 212(1), 8(2012)
15 W. Luo, L. T. Wang, Q.M. Wang, H.L. Gong, M. Yan, A new filler metal with low contents of Cu for high strength aluminum alloy brazed joints, Materials & Design, 63, 263(2014)
doi: 10.1016/j.matdes.2014.06.033
16 Anton Gorny, Jeyakumar Manickaraj, Zhonghou Cai, Sumanth Shankar, Evolution of Fe based intermetallic phases in Al-Si hypoeutectic casting alloys: Influence of the Si and Fe concentrations, and solidification rate, Journal of Alloys and Compounds, 577, 103(2013)
doi: 10.1016/j.jallcom.2013.04.139
17 Tong Gao, Yuying Wu, Chong Li, Xiangfa Liu, Morphologies and growth mechanisms of α-Al(FeMn)Si in Al-Si-Fe-Mn alloy, Materials Letters, 110,(2013)
18 Salem Seifeddine, Sten Johansson, L. Svensson Ingvar, The influence of cooling rate and manganese content on the β-Al5FeSi phase formation and mechanical properties of Al-Si-based alloys, Materials Science and Engineering: A, 490(1-2), (2008)
19 A. M.Samuel, J. Gauthier, F.H. Samuel, Microstructural aspects of the dissolution and melting of Al2Cu phase in Al-Si alloys during solution heat treatment, Metallurgical and Materials Transactions A, 27A, 1785(1995)
doi: 10.1007/BF02651928
20 Z. Li, A.M. Samuel, F.H. Samuel, Effect of alloying elements on the segregation and dissolution of CuAl2 phase in A1-Si-Cu 319 alloys, Journal of Materials Science, 38, 1203(2003)
doi: 10.1023/A:1022857703995
21 A. M. Samuel, M. Ferrante, The effect of Sn additions on the semi-solid microstructure of an Al-7Si-0.3Mg alloy, Materials Science and Engineering A, A337, 67(2002)
22 Abd El-Salam F., M. Abd El-Khalek A., H. Nada R., A. Wahab L., Y. Zahran H., Effect of Sn content on the structural and mechanical properties of Al-Si alloy, Materials Science and Engineering A, 527(4-5), 1223(2010)
23 R. H. Nada, F. Abd El-Salam, M. Abd El-Khalek A., A. Wahab L., Y. Zahran H., Effect of cyclic stress reduction on the creep parameters of Al-Si alloy with Ag and Sn additions, Materials Science and Engineering A, 552, 486(2012)
24 Guiqing Wang, Xiufang Bian, Weimin Wang, Junyan Zhang, Influence of Cu and minor elements on solution treatment of Al-Si-Cu-Mg cast alloys, Materials Letters, 57(24-25), 4083(2003)
25 J. H. Sokolowsk, X-C. Sun, G. Byczynsk, D. O. Northwood, D. E. Penrod, The removal of copper-phase segregation and the subsequent improvement in mechanical properties of cast 319 aluminium alloys by a two-stage solution heat treatment, Journal of Materials Processing Technology, 53, 385(1995)
doi: 10.1016/0924-0136(95)01995-Q
26 A. M. Kliauga, E. A. Vieira, M. Ferrante, The influence of impurity level and tin addition on the ageing heat treatment of the 356 class alloy, Materials Science and Engineering A, 480(1-2), 5(2008)
doi: 10.1016/j.msea.2007.07.091
27 HU Ruiling, LI Zhiqiang, XIE Jianying, High frequency welding of vehicle heat exchanger tube of aluminium alloy, Hot Working Technology, 35(19), 15(2006)
27 (胡瑞玲, 李志强, 解剑英, 车辆热交换器铝合金管的高频焊接, 热加工工艺, 35(19), 15(2006))
doi: 10.3969/j.issn.1001-3814.2006.19.006
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.