Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (1): 63-67    DOI: 10.11901/1005.3093.2015.406
  研究论文 本期目录 | 过刊浏览 |
Triton X-100辅助溶剂热法合成锂电池负极材料花型SnS2及其电化学性能*
张娟1, 陈秀娟2(), 张鹏林1
1. 省部共建有色金属先进加工与再利用国家重点实验室 兰州 730050
2. 兰州理工大学机电工程学院 兰州 730050
Synthesis and Electrochemical Properties of Flower-like SnS2 by Triton X-100 Assisted Hydrothermal Method as Negative Electrode Material for Lithium Ion Batteries
ZHANG Juan1, CHEN Xiujuan2,**(), ZHANG Penglin1
1. State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2. School of Mechanical and Electronical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
引用本文:

张娟, 陈秀娟, 张鹏林. Triton X-100辅助溶剂热法合成锂电池负极材料花型SnS2及其电化学性能*[J]. 材料研究学报, 2016, 30(1): 63-67.
Juan ZHANG, Xiujuan CHEN, Penglin ZHANG. Synthesis and Electrochemical Properties of Flower-like SnS2 by Triton X-100 Assisted Hydrothermal Method as Negative Electrode Material for Lithium Ion Batteries[J]. Chinese Journal of Materials Research, 2016, 30(1): 63-67.

全文: PDF(2329 KB)   HTML
摘要: 

采用表面活性剂Triton X-100辅助溶剂热法合成花型纳米SnS2, 研究了表面活性剂添加量(0-2 mL)对样品的成分、形貌及电化学性能的影响。X射线衍射光谱(XRD)和能谱(EDS)的测试结果表明: 合成的材料为单相SnS2, 具有层状六方CdI2型晶体结构; 扫描电镜(SEM)观察结果表明, Triton X-100在控制花型SnS2形貌的过程中起了决定性作用, 当Triton X-100的添加量为0.5 mL时样品的结晶度最好, 花型结构饱满, 形貌最佳; 电化学性能测试结果表明: Triton X-100添加量为0.5 mL时, 在0.01-1.2 V电压范围及0.15C倍率下花型纳米SnS2的首次放电比容量可达1598 mAhg-1, 首次可逆比容量为656 mAhg-1, 循环50次后可逆比容量为572 mAhg-1, 容量保持率达到87.2%。

关键词 材料合成与加工工艺Triton X-100溶剂热法花型纳米SnS2电化学性能    
Abstract

Flower-like nanostructured SnS2 was synthesized by polyethylene glycol octylphenol ether(Triton X-100)-assisted hydrothermal method, the effect of the amount of surfactant Triton X-100 on the ingredient, morphology and electrochemical properties of the synthesized product was studied. Results show that the product is single-phase SnS2 with crystal structure of hexagonal CdI2. The Triton X-100 plays a dominative role in controlling the morphology of SnS2. With a dosage of 0.5 mL Triton X-100 the synthesized SnS2 possesses the highest degree of crystallinity with a fully flower-like morphology . A rechargeable Li-ion batteries with the as-prepared flowerlike nanostructured SnS2 as anode exhibits excellent electrochemical performance with high initial discharge specific capacity 1598 mAhg-1 and reversible capacity 656 mAhg-1 respectively, in a voltage range of 0.01-1.2 V and a rate of 0.15C. After 50 cycles with a rate of 0.15C, the specific capacities retain 572 mAhg-1 and capacity retention rate can reach 87.2%.

Key wordssynthesizing and processing technics    Triton X-100    hydrothermal method    flower-like SnS2 nanostructure    electrochemical properties
收稿日期: 2015-07-15     
基金资助:* 国家自然科学基金51161012资助项目
作者简介: 陈秀娟
图1  不同Triton X-100添加量样品的XRD图谱
图2  Triton X-100添加量为0.5 mL样品的EDS图谱
图3  不同Triton X-100添加量样品的SEM像
图4  电流密度为100 mAhg-1(0.15C)时不同Triton X-100添加量样品的充放电曲线
图5  电流密度为100 mAhg-1(0.15C)时不同Triton X-100添加量样品的循环性能曲线
1 Y. Wang, G. Z. Cao, Developments in nanostructured cathode materials for high-performance lithium-ion batteries, Adv. Mater., 20(12), 2251(2008)
2 XU Yanhui, The negative-electrode material electrochemistry for the Li-ion battery, Rare Metal Materials and Engineering, 33(1), 1(2004)
2 (徐艳辉, 二次锂电池负极材料电化学, 稀有金属材料与工程, 33(1), 1(2004))
3 F. Caruso, R. A. Caruso, H. Mohwald, Nano engineering of inorganic and hybrid hollow spheres by colloidal templating, Science, 282(5391), 1111(1998)
4 Jung-wook Seo, Jung-tak Y. Jang, Seung-won Park, Jinwoo Cheon, Two-dimensional SnS2 nanoplates with extraordinary high discharge capacity for lithium ion batteries, Adv. Mater., 20(22), 4269(2008)
5 Y. Yu, L. Gu, C.L. Wang, Abirami Dhanabalan, Peter A van Aken, Joachim Maier, Encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in 1ithium-based batteries, Angew. Chem. Int., 48(35), 6485(2009)
6 Y. Q. Zou, Y. Wang, Sn@CNT nanostructures rooted in grapheme with high and fast Li-storage capacities, ACS Nano, 5(10), 8108(2011)
7 Chitta R. Patra, Ayelet Odani, Vilas G. Pol, Doron Aurbach, Aharon Gedanken, Microwave-assisted synthesis of tin sulfide nanoflakes and their electrochemical performance as Li-inserting materials, Solid State Electrochem, 11(2), 186(2007)
8 H. J. Geng, Y. J. Su, H. Wei, M. H. Xu, L. M. Wei, Z. Yang, Y. F. Zhang, Controllable synthesis and photoelectric property of hexagonal SnS2 nanoflakes by Triton X-100 assisted hydrothermal method, Materials Letters, 111, 204(2013)
9 Tae-Joon Kim, Chunjoong Kim, Dongyeon Son, Myungsuk Choi, Byungwoo Park, Novel SnS2-nanosheet anodes for lithium-ion batteries, Power Sources, 167(2), 529(2007)
10 X. L. Gou, J. Chen, W. Shen, Synthsis, characterization and application of SnSx(x=1, 2) nanoparticles, Materials Chemistry and Physics, 93, 557(2005)
11 S. Liu, X. M.Yin L. B. Chen, Q. L. Li, T. H. Wang, Synthesis of self-assembled 3D flower-like SnS2 nanostructures with enhanced lithium ion storage property, Solid State Sci, 12(5), 712(2010)
12 W. Shi, B. G. Lu, Nanoscale kirkendall effect synthesis of echinus-like SnO2@SnS2 nanospheres as high performance anode material for lithium ion batteries, Electrochimica Acta, 133, 247(2014)
13 C. F. Shen, L.Y. Ma, M. B. Zheng, B. Zhao, Synthesis and electrochemical properties of graphene-SnS2 nanocomposites for lithium-ion batteries, Solid State Electrochem, 16(5), 1999(2012)
14 Q. Q. Zhang, R. Li, M. M. Zhang, B. L. Zhang, X. L. Gou, SnS2/reduced graphene oxide nanocomposites with superior lithium storage performance, Electrochimica Acta, 115, 425(2014)
15 ZHOU Chao, GAO Yanmin, WANG Dan, HAN Lian, FENG Qing, Influence of surfactant PVP and CTAB synergistic effect on the preparation of Cu2ZnSnS4 (CZTS) particles, Chinese Journal of Materials Research, 27(5), 515(2013)
15 (周超, 高延敏, 王丹, 韩莲, 冯清, 表面活性剂PVP、CTAB协同效应对制备Cu2ZnSnS4微粒的影响, 材料研究学报, 27(5), 515(2013))
16 ZHANG Jinzhong, WANG Zhonglin, LIU Jun, CHEN Shaowei, LIU Gangyu, Self-Assembled Nanostructures, (Beijing, Chemical Industry Press, 2005) p. 10
16 (张金中, 王中林, 刘俊, 陈少伟, 刘刚玉, 自组装纳米结构, (北京, 化学工业出版社, 2005) p.10)
17 J. Morales, C. Perez-Vicente, J. L. Tirado, Chemical and electrochemical lithium intercalation and staging in 2H-SnS2, Solid State Ionics, 51(3-4), 133(1992)
18 C. Julien, C. Perez-Vicente, Vibrational studies of lithium-intercalated SnS2 , Solid State Ionics, 89(3-4), 337(1996)
[1] 刘东璇, 陈平, 曹新荣, 周雪, 刘莹. 碗状C@FeS2@NC复合材料的制备及其电化学性能[J]. 材料研究学报, 2023, 37(1): 1-9.
[2] 刘艳云, 刘宇涛, 李万喜. rGO/PANI/MnO2 三元复合材料的制备和电化学性能[J]. 材料研究学报, 2022, 36(7): 552-560.
[3] 周海涛, 侯湘武, 汪彦博, 肖旅, 袁勇, 孙京丽. Nb-TiAl合金的高温变形行为及其板材的性能[J]. 材料研究学报, 2022, 36(6): 471-480.
[4] 闫福照, 李静, 熊良银, 刘实. FeCr-ODS铁素体合金的氧化+粉锻工艺制备及其微观结构[J]. 材料研究学报, 2022, 36(6): 461-470.
[5] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[6] 王永鹏, 贾治豪, 刘梦竹. 二维CdO纳米棒的制备及其用于葡萄糖传感器的可行性[J]. 材料研究学报, 2021, 35(1): 53-58.
[7] 夏傲, 赵晨鹏, 曾啸雄, 韩曰鹏, 谈国强. B掺杂MnO2的制备及其电化学性能[J]. 材料研究学报, 2021, 35(1): 36-44.
[8] 蔡国栋, 程西云, 王典. FDM3D打印316L不锈钢试样和La对析出物形貌和分布的影响[J]. 材料研究学报, 2020, 34(8): 635-640.
[9] 左成, 杜云慧, 张鹏, 王玉洁, 曹海涛. Al2O3包覆Li1.2Mn0.54Ni0.13Co0.13O2富锂正极材料的电化学性能[J]. 材料研究学报, 2020, 34(8): 621-627.
[10] 谢礼兰, 杨冬升, 凌静. 高容量锂电池负极材料TiNb2O7的合成及其机理[J]. 材料研究学报, 2020, 34(5): 385-391.
[11] 巩桂芬,李泽,王磊,崔巍巍. 静电纺TiO2改性联苯型聚酰亚胺锂离子电池隔膜[J]. 材料研究学报, 2020, 34(3): 169-175.
[12] 马炜杰,杨西荣,罗雷,刘晓燕,郝凤凤. 复合形变超细晶纯钛的动态再结晶模型[J]. 材料研究学报, 2020, 34(3): 217-224.
[13] 姜巨福, 王迎, 肖冠菲, 邓腾, 刘英泽, 张颖. 变质细化和热处理对挤压铸造成形A356铝合金构件性能的影响[J]. 材料研究学报, 2020, 34(12): 881-891.
[14] 杨占鑫, 吴琼, 任奕桥, 屈凯凯, 张哲豪, 仲为礼, 范广宁, 齐国超. 宏量制备层状Ti3C2及其超级电容的性能[J]. 材料研究学报, 2020, 34(11): 861-867.
[15] 周鹏飞,张鹏,杜云慧,王玉洁,左成. 喷雾干燥法制备富锂正极材料及其电化学性能[J]. 材料研究学报, 2019, 33(7): 481-487.