Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (7): 481-488    DOI: 10.11901/1005.3093.2015.322
  本期目录 | 过刊浏览 |
CrMoW转子钢的高温超高周疲劳性能*
侯方1, 李久楷1, 谢少雄2, 刘永杰1, 王清远1,2(), 张军辉3
1. 四川大学建筑与环境学院 成都 610065
2. 四川大学空天科学与工程学院 成都 610065
3. 上海电气电站设备有限公司上海汽轮机厂 上海 200240
Very High Cycle Fatigue Properties of CrMoW Rotor Steel at High-temperature
HOU Fang1, LI Jiukai1, XIE Shaoxiong2, LIU Yongjie1, WANG Qingyuan1,2,*(), ZHANG Junhui3
1. College of Architecture and Environment, Sichuan University, Chengdu 610065, China
2. School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
3. Shanghai Electric Power Generation Equipment Co., Ltd., Shanghai Turbine Plant, Shanghai 200240, China
引用本文:

侯方, 李久楷, 谢少雄, 刘永杰, 王清远, 张军辉. CrMoW转子钢的高温超高周疲劳性能*[J]. 材料研究学报, 2016, 30(7): 481-488.
Fang HOU, Jiukai LI, Shaoxiong XIE, Yongjie LIU, Qingyuan WANG, Junhui ZHANG. Very High Cycle Fatigue Properties of CrMoW Rotor Steel at High-temperature[J]. Chinese Journal of Materials Research, 2016, 30(7): 481-488.

全文: PDF(6674 KB)   HTML
摘要: 

使用自主搭建的高温超声疲劳实验系统在常温和600℃进行CrMoW转子钢1×1010周次超高周疲劳实验, 研究了CrMoW转子钢在工作温度下的超高周疲劳性能。结果表明: 在600℃和常温下转子钢的S-N曲线均呈连续下降型, 试件在109周次后仍发生疲劳断裂。在常温实验条件下疲劳寿命小于1×107周次试件的裂纹多萌生在表面, 而高于1×107周次的多以内部萌生为主。在高温实验环境下裂纹也在内部夹杂处萌生, 且裂纹萌生方式对疲劳寿命没有决定性作用。鱼眼定量分析结果表明, CrMoW转子钢在600℃和常温下裂纹扩展的应力强度因子门槛值分别为3.4 MPam1/2和1.0 MPam1/2

关键词 金属材料转子钢高温超高周疲劳夹杂物裂纹扩展门槛值    
Abstract

The fatigue properties of CrMoW rotor steel were investigated by a high temperature ultrasonic fatigue system. Fatigue tests of CrMoW rotor steel up to 1×1010 cycles had been conducted at room temperature and 600℃ respectively. Results reveal that the type of S-N curves present continuously descending at room temperature and 600℃. Fatigue fracture occured over 109 cycles. Fractograph of specimens show that Crack initiate mainly from the surface for the specimens that fatigue life is less than 1×107 cycles, but crack initiate mostly from inclusions for those that fatigue life is greater than 1×107 cycles at room temperature. It is found that crack can also initiate at inclusions, but the modes of crack initiation do not play a decisive role for the fatigue life at high temperature. Threshold values of fatigue crack growth obtained by measuring the size of fisheye are 3.4 MPam1/2 and 1.0 MPam1/2 at room temperature and 600℃ respectively.

Key wordsmetallic materials    rotor steel    high temperature    very high cycle fatigue    inclusion initiation    threshold value of crack growth
收稿日期: 2015-10-14     
基金资助:* 国家自然科学基金51271147资助项目
作者简介: To whom correspondence should be addressed, Tel: (028)85406919, E-mail: wangqy@scu.edu.cn

本文联系人: 王清远,教授

图1  CrMoW转子钢的微观组织结构
C Cr Mo W Ni Fe
0.13 10.37 1.08 1.01 0.80 86
表1  材料化学成分(质量分数, %)
Temperature/℃ E/GPa Rm/MPa Rp0.2/MPa Hardness(HV)
20℃ 210 900 780 296.8
600℃ 138 550 490 -
表2  材料力学性能参数
图2  超声实验试件及其表面形貌
图3  高温超声实验系统图
图4  实验过程中温度的变化曲线
图5  常温S-N曲线
图6  高温S-N曲线
图7  疲劳强度随着疲劳寿命的变化
图8  疲劳强度与拉伸强度比值随着疲劳寿命的变化
图9  常温试件的典型断口形貌
图10  短寿命试件的裂纹萌生区形貌
图11  高温试件的典型断口形貌
图12  夹杂物的直径与疲劳寿命的关系
1 Wu Haili, ZHU Yuemei, JIA Guoqing, Low cycle fatigue behaviors of X12CrMoWVNbN10-1-1 steel for rotors at room temperature, Journal of University of Science and Technology Beijing, 33(7), 842(2011)
1 (吴海利, 朱月梅, 贾国庆, X12CrMoWVNbN10-1-1转子钢室温低周疲劳特性. 北京科技大学学报, 33(7), 842(2011))
2 ZHAO Peng, XUAN Fuzhen, TU Shandong, Experimental study on ratchet effect of steel X12CrMoWVNbB10-1-1 for USC steam turbine rotors, Journal of Chinese Society of Power Engineering, 30(4), 310(2010)
2 (赵鹏, 轩福贞, 涂善东, 超超临界汽轮机转子X12CrMoWVNbB10-1-1钢棘轮效应的试验研究, 动力工程学报, 30(4), 310(2010))
3 CHEN Jian, HE Jianjun, SUN Qing-min, et al.Effect of loading rate on low-cycle fatigue properties of 30CrMo1V rotor steel, Journal of Chinese Society of Power Enginnering, 30(9) 712(2010)
3 (陈荐, 何建军, 孙清民, 加载速率对30Cr1Mo1V汽轮机转子钢低周疲劳特性的影响, 动力工程学报, 30(9) 712(2010))
4 MAO Xueping, MA Zhiyong, WANG Gang, Study on softening property of 30Cr1Mo1V steel under high temperature low-cycle fatigue, Proceedings of the CSEE, 26(16), 134(2006)
4 (毛雪平, 马志勇, 王罡, 30Cr1Mo1V钢高温低周疲劳中的软化特性, 中国电机工程学报, 26(16), 134(2006))
doi: 10.3321/j.issn:0258-8013.2006.16.023
5 Barella S, Bellogini M, Boniardi M, Failure analysis of a steam turbine rotor, Engineering Failure Analysis, 18(6), 1512(2011)
doi: 10.1016/j.engfailanal.2011.05.006
6 Fournier B, Dalle F, Sauzay M, Comparison of various 9-12%Cr steels under fatigue and creep-fatigue loadings at high temperature,Materials Science and Engineering: A, 528(22-23), 6935(2011)
7 WU Q, LU F, CUI H, Microstructure characteristics and temperature-dependent high cycle fatigue behavior of advanced 9% Cr/CrMoV dissimilarly welded joint, Materials Science and Engineering: A, 615, 99(2014)
8 YAN Yi-ming, HU Zheng-fei, LIN Fu-sheng, Fatigue behavior of 30CrMo1V rotor steel at elevated temperature after long-term service, Journal of Materials Engineering, (11), 3(2012)
8 (严益民, 胡正飞, 林富生, 汽轮机转子30Cr1Mo1V钢长期服役状态下的高温疲劳行为, 材料工程, (11), 3(2012))
9 Wang Q Y, Berard J Y, Dubarre A, Gigacycle fatigue of ferrous alloys, Fatigue Fracture Engineering Materials Structures, 22(8), 668(2003)
doi: 10.1046/j.1460-2695.1999.t01-1-00185.x
10 BATHIAS C, Piezoelectric fatigue testing machines and devices, International Journal of Fatigue, 28(11), 1440(2006)
doi: 10.1016/j.ijfatigue.2005.09.020
11 Bruchhausen M, Hhner P, Fischer B, Device for carrying out environmental very high cycle fatigue tests with ultrasonic excitation in asymmetric push-pull mode, International Journal of Fatigue, 52, 11(2013)
doi: 10.1016/j.ijfatigue.2013.02.010
12 EBARA R, The present situation and future problems in ultrasonic fatigue testing-mainly reviewed on environmental effects and materials’screening. International Journal of Fatigue, 28(11), 1466(2006)
doi: 10.1016/j.ijfatigue.2005.04.019
13 Mcevily A J, Nakamura T, Oguma H, On the mechanism of very high cycle fatigue in Ti-6Al-4V, Scripta Materialia, 59(11), 1208(2008)
doi: 10.1016/j.scriptamat.2008.08.012
14 Stanzl-Tschegg S, Very high cycle fatigue measuring techniques, International Journal of Fatigue, 60(1), 6(2014)
doi: 10.1016/j.ijfatigue.2012.11.016
15 Furuya Y, Kobayashi K, Hayakawa M, High-temperature ultrasonic fatigue testing of single-crystal superalloys, Materials Letters, 69, 2(2012)
doi: 10.1016/j.matlet.2011.11.066
16 Wagner D, Cavalieri F J, Bathias C, Ultrasonic fatigue tests at high temperature on an austenitic steel, Propulsion and Power Research, 1(1), 32(2012)
doi: 10.1016/j.jppr.2012.10.008
17 Yi J Z, Torbet C J, Feng Q, Ultrasonic fatigue of a single crystal Ni-base superalloy at 1000℃, Materials Science and Engineering: A, 443(1-2), 143(2007)
doi: 10.1016/j.msea.2006.08.028
18 Zhu X, Shyam A, Jones J, Effects of microstructure and temperature on fatigue behavior of E319-T7 cast aluminum alloy in very long life cycles, International Journal of Fatigue, 28(11), 1567(2006)
doi: 10.1016/j.ijfatigue.2005.04.016
19 LI Jiukai, LIU Yongjie, WANG Qingyuan, High-temperature ultra-high cycle fatigue testing of TC17 titanium alloy, Journal of Aerospace Power, 29(7), 1568(2014
19 )(李久楷, 刘永杰, 王清远, TC17钛合金高温超高周疲劳实验. 航空动力学报, 29(7), 1568(2014))
doi: 10.13224/j.cnki.jasp.2014.07.008
20 Shyam A, Torbet C J, Jha S K, Development of ultrasonic fatigue for rapid high temperature fatigue studies in turbine engine materials, Materials Damage Prognosis, 248(2005)
21 Abe T, Gigacycle fatigue properties of 1800MPa class spring steels. Fatigue & Fracture of Engineering Materials & Structure, 22(7), 162(2004)
doi: 10.1111/j.1460-2695.2004.00737.x
22 Sakai T, Sato Y, Oguma N, Characteristic S-N properties of high-carbon-chromium-bearing steel under axial loading in long-life fatigue, Fatigue & Fracture of Engineering Materials & Structures, 25(8-9), 766(2002)
doi: 10.1046/j.1460-2695.2002.00574.x
23 HONG Youshi, ZHAO Aiguo, QIAN Guian, Essential characteristics and influential factors for very-high -cycle fatigue behavior of metallic materials, Acta Metallurgica Sinica, 45(7), 770(2009)(洪友士, 赵爱国, 钱桂安, 合金材料超高周疲劳行为的基本特征和影响因素, 金属学报, 45(7), 770(2009))
24 Nie Y H, Fu W T, Hui W J, Very high cycle fatigue behaviour of 2000-MPa ultra-high-strength spring steel with bainite-martensite duplex microstructure, Fatigue & Fracture of Engineering Materials & Structures, 32(3), 192(2009)
doi: 10.1111/j.1460-2695.2008.01319.x
25 YANG Zhenguo, LI Shouxin, LI Guangyi, WANG Qingyuan, Estimation of the critical size of inclusion in high strength steel under high cycle fatigue condition, Acta Metallurgica S inica, 41(11), 1138(2005
25 )(杨振国, 李守新, 李广义, 王清远, 高周疲劳条件下高强钢临界夹杂物尺寸估算, 金属学报, 41(11), 1138(2005))
doi: 10.3321/j.issn:0412-1961.2005.11.004
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.