Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (8): 569-575    DOI: 10.11901/1005.3093.2014.600
  本期目录 | 过刊浏览 |
往复挤压纯镁的组织演变和力学性能
董婷婷1,2,王渠东1,2(),郭炜1,2,刘鉴锋1,2,蒋海燕1,2
1. 上海交通大学轻合金精密成型国家工程研究中心 上海 200240
2. 上海交通大学金属基复合材料国家重点实验室 上海 200240
Microstructure and Mechanical Property of Pure Magnesium Processed by Cyclic Extrusion Compression
Tingting DONG1,2,Qudong WANG1,2,**(),Wei GUO1,2,Jianfeng LIU1,2,Haiyan JIANG1,2
1. National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, Shanghai 200240, China
2. State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
引用本文:

董婷婷,王渠东,郭炜,刘鉴锋,蒋海燕. 往复挤压纯镁的组织演变和力学性能[J]. 材料研究学报, 2015, 29(8): 569-575.
Tingting DONG, Qudong WANG, Wei GUO, Jianfeng LIU, Haiyan JIANG. Microstructure and Mechanical Property of Pure Magnesium Processed by Cyclic Extrusion Compression[J]. Chinese Journal of Materials Research, 2015, 29(8): 569-575.

全文: PDF(4336 KB)   HTML
摘要: 

研究了纯镁在350℃往复挤压2, 4, 8道次, 以及在250℃, 350℃, 450℃往复挤压2道次的组织和力学性能的变化规律。结果表明, 纯镁经350℃往复挤压后, 组织显著细化, 挤压道次从2增加到8时, 晶粒尺寸无明显变化, 而屈服强度下降, 延伸率提高。通过电子背散射衍射技术(EBSD)发现纯镁在350℃往复挤压2, 4, 8道次后, 形成{0001}基面与挤压方向分别约成25°, 30°, 40°夹角的织构, 且织构强度增加, 基面滑移系的Schmid因子上升。纯镁在250℃, 350℃, 450℃往复挤压2道次后, 随着挤压温度下降, 晶粒尺寸减小, 屈服强度上升, 屈服强度和晶粒尺寸之间的关系可表述为

关键词 金属材料纯镁往复挤压微观组织力学性能织构晶粒尺寸    
Abstract

Microstructure and tensile property of pure magnesium processed by cyclic extrusion-compression (CEC) at 350℃ for 2, 4 and 8 passes respectively, as well as for 2 passes at 250℃, 350℃ and 450℃ respectively are investigated. Results showed that the microstructure of pure magnesium is significantly refined and recrystallized after CEC for 2 passes at 350℃. With the increase of passes, the grain sizes of CECed pure magnesium showed no obvious differences. It was found by means of electron backscatter diffraction (EBSD) analysis that a texture with the basal plane of grains inclining 20o -40o to the extrusion direction developed during the CEC processing. With the increase of CEC passes, the maximum intensity of the texture and Schmid factor of basal slip system increased. Compare to that for 2 passes, the yield stress of pure magnesium after CEC for 8 passes at 350℃ decreases from 60 MPa to 41 MPa, and the elongation increases from 8% to 16.7%. The yield stress and grain size of the pure Mg processed by CEC for 2 passes at 250℃, 350℃and 450℃ follows the Hall-Petch relationship, which can be described as .

Key wordsmetallic materials    pure magnesium    cyclic extrusion compression    microstructure    mechanical property    texture    grain size
收稿日期: 2014-10-20     
基金资助:* 国家自然科学基金(51074106, 51374145,51404151), 中国博士后科学基金2014M561466, 上海市博士后科研资助计划14R21411000资助项目及上海市科学技术委员会资助项目09JC1408200。
图1  往复挤压工艺示意图
图2  取样位置示意图
图3  纯镁铸态组织
图4  纯镁在350℃往复挤压后的显微组织
图5  纯镁往复挤压2道次显微组织
图6  纯镁经350℃往复挤压后的{0001}, 10 1 ? 0 and 10 1 ? 1 极图
图7  纯镁经350℃往复挤压后晶粒位相角统计图
图8  纯镁350℃往复挤压后的力学性能
图9  纯镁在不同温度下往复挤压2道次后的力学性能
图10  纯镁往复挤压后屈服强度与晶粒尺寸的关系
图11  350℃纯镁往复挤压后力学性能和织构的最大极密度的关系
图12  350℃往复挤压后纯镁的Schmid因子
1 Ming-Hung Tsai,May-Show Chen, Ling-Hung Lin, Ming-Hong Lin, Ming-Hong Lin, Ching-Zong Wu, Keng-Liang Ou, Chih-Hua Yu, Effect of heat treatment on the microstructures and damping properties of biomedical Mg–Zr alloy, Journal of Alloys and Compounds, 509, 813(2011)
2 Y. Estrin, A. Vinogradov,Extreme grain refinement by severe plastic deformation: A wealth of challenging science, Acta Materialia, 61(3), 782(2013)
3 Jinbao Lin,Qudong Wang, Liming Peng, Hans J. Roven, Microstructure and high tensile ductility of ZK60 magnesium alloy processed by cyclic extrusion and compression, Journal of Alloys and Compounds, 476(1-2), 441(2009)
4 Tao Peng,Qudong Wang, Jinbao Lin, Manping Liu, Hans J. Roven, Microstructure and enhanced mechanical properties of an Mg–10Gd-2Y-0.5Zr alloy processed by cyclic extrusion and compression, Materials Science and Engineering A, 528(3), 1143(2011)
5 Jinbao Lin,Qudong Wang, Yongjun Chen, Manping Liu, H. J. Roven, Microstructure and texture characteristics of ZK60 Mg alloy processed by cyclic extrusion and compression, Transactions of Nonferrous Metals Society of China, 20(11), 2081(2010)
6 Y. J. Chen, Q. D. Wang, H. J. Roven, M. Karlsen, Y. D. Yu, M. P. Liu, J. Hjelen,Microstructure evolution in magnesium alloy AZ31 during cyclic extrusion compression, Journal of Alloys and Compounds, 462(1-2), 192(2008)
7 Changpeng Wang,Huangsheng Mei, Rongqiang Li, Ling Wang, Jie Liu, Zehui Hua, Lijin Zhao, Feifei Pen, Hui Li, Microstructure evolution and grain coarsening behaviour during partial remelting of cyclic extrusion compression formed AZ61 magnesium alloy, Acta Metallurgica Sinica (English Letters), 26(2), 149(2013)
8 WANG Qudong,LIN Jinbao, PENG Liming, CHEN Yongjun, Influence of cyclic extrusion and compression on the mechanical property of Mg Alloy AK60, Acta Metallurgica Sinica, 44(1), 55(2008)
8 (王渠东, 林金保, 彭立明, 彭 涛, 陈勇军, 往复挤压变形对ZK60镁合金力学性能的影响, 金属学报, 44(1), 55(2008))
9 A. Azushima, R. Kopp, A. Korhonen, D. Y. Yang, F. Micari, G. D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowki, A. Yanagida, Severe plastic deformation (SPD) processes for metals, CIRP Annals - Manufacturing Technology, 57(2), 716(2008)
10 H. Zhou, W. Z. Xu, W. W. Jian, G. M. Cheng, X. L. Ma, W. Guo, S. N. Mathaudhu, Q. D. Wang, Y. T. Zhu,A new metastable precipitate phase in Mg–Gd–Y–Zr alloy, Philosophical Magazine, 94(21), 2403-2409(2014)
11 W. W. Jian, G. M. Cheng, W. Z. Xu, H. Yuan, M. H. Tsai, Q. D. Wang, C. C. Koch,Ultrastrong Mg alloy via nano-spaced stacking faults, Materials Research Letters, 12(3), 37-41(2013)
12 W. M. Gan, M. Y. Zheng, H. Chang, X. J. Wang, X. G. Qiao, K. Wu, B.Schwebke, H. G. Brokmerier,Microstructure and tensile property of the ECAPed pure magnesium, Journal of Alloys and Compounds, 470(1-2), 256(2009)
13 Kaveh Edalati,Akito Yamamoto, Zenji Horita, Tatsumi Ishihara, High-pressure torsion of pure magnesium: Evolution of mechanical properties, microstructures and hydrogen storage capacity with equivalent strain, Scripta Materialia, 64(9), 880(2011)
14 Somjeet Biswas,Satyaveer Singh Dhinwal, Satyam Suwas, Room-temperature equal channel angular extrusion of pure magnesium, Acta Materialia, 58(9), 3247(2010)
15 N. Stanford, M. R. Barnett,The origin of “rare earth” texture development in extruded Mg-based alloys and its effect on tensile ductility, Materials Science and Engineering: A, 496(1-2), 399(2008)
16 Emley,Principles of Magnesium Technology (Oxford, Pergamon, 1966)p. 122
17 W. Yuan, S.K. panigrahi, J.Q. Su, R. S. Mishra,Influence of grain size and texture on Hall-Petch relationship for a magnesium alloy, Scripta Materialia, 65(11), 994(2011)
18 R. Armstrong, I. Codd, R. M. Douthwaite, N. J. Petch,The plastic deformation of polycrystalline aggregates, Philosophical Magazine, 7(73), 45(1962)
19 CHEN Yongjun,Microstructure and mechanical properties of magnesium alloys fabricated by cyclic extrusion compression, Doctoral Dissertation, Shanghai Jiao Tong University(2007)
19 (陈勇军, 往复挤压镁合金的组织结构与力学性能研究, 博士学位论文, 上海交通大学(2007))
20 LIN Jinbao,Microstructure evolution and strengthening mechanism of ZK60 and GW102K alloys fabricated by cyclic extruaion and compression, Doctoral Dissertation, Shanghai Jiao Tong University(2008)
20 (林金保, 往复挤压 ZK60 与 GW102K 镁合金的组织演变及强韧化机制研究, 博士学位论文, 上海交通大学(2008))
21 W. J. Kim, S. I. Hong, Y. S. Kim, S.H. Min, H. T. Jeong, Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing, Acta Materialia, 51(11), 3293(2003)
22 CHEN Zhenghua, Magnesium Wrought Alloys, First edition (Beijing, Chemical Industry Press, 2005) p.89-91(p.89-91)
23 Y. V. R. K. Prasad, K.P. Rao,Processing maps for hot deformation of rolled AZ31 magnesium alloy plate: Anisotropy of hot workability, Materials Science and Engineering A, 487, 316(2008)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.