Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (8): 621-626    DOI: 10.11901/1005.3093.2013.913
  本期目录 | 过刊浏览 |
碳化钨颗粒增强钢基表层复合材料的热物理特性*
李祖来(),蒋业华,周荣,王志胜,山泉
昆明理工大学材料科学与工程学院 昆明 650093
Thermo-Physical Characteristics of WC Particle-Reinforced Steel Substrate Surface Composites
Zulai LI(),Yehua JIANG,Rong ZHOU,Zhisheng WANG,Quan SHAN
School of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093
引用本文:

李祖来,蒋业华,周荣,王志胜,山泉. 碳化钨颗粒增强钢基表层复合材料的热物理特性*[J]. 材料研究学报, 2014, 28(8): 621-626.
Zulai LI, Yehua JIANG, Rong ZHOU, Zhisheng WANG, Quan SHAN. Thermo-Physical Characteristics of WC Particle-Reinforced Steel Substrate Surface Composites[J]. Chinese Journal of Materials Research, 2014, 28(8): 621-626.

全文: PDF(3134 KB)   HTML
摘要: 

采用真空实型铸渗(V-EPC)工艺制备碳化钨颗粒增强钢基表层复合材料, 并测试其热膨胀系数和热导率, 研究了工艺参数对热物理特性的影响。结果表明, 随着测试位置与表层复合材料过渡区间距的增大热膨胀系数逐渐减小, 而在相同位置同一温度下表层复合材料的热膨胀系数随着碳化钨颗粒的增大而增大。不同粒度碳化钨颗粒增强表层复合材料的热导率, 均随着温度的升高呈增大趋势。当温度较低(40℃与105℃)时, 不同碳化钨颗粒粒度的复合材料的热导率相差不大。但是当温度升高到一定值(大于170℃)时, 复合材料的热导率随着碳化钨颗粒粒度的增大呈降低趋势。在预制层中加入Ni粉, 可降低表层复合材料的热膨胀系数和热导率。

关键词 复合材料热膨胀系数热导率颗粒增强    
Abstract

Surface composites of WC reinforced steel matrix were fabricated by vacuum-expendable pattern casting (V-EPC) technology in order to provide theoretic direction for designing surface composites with high thermal fatigue performance, and then the thermo-physical properties of the composites, such as thermal expansion coefficients and thermal conductivities were characterized. The influence of process parameters on the thermo-physical characteristics was investigated. The results show that the thermal expansion coefficient the sampled layer decreased when the distance of which to the transition layer becomes lager. For the layers sampled at the same distance, their thermal expansion coefficient increased with the increase of WC particles size. For the surface composites reinforced with different sizes of WC particles, the thermal conductivities increased with the increasing temperature. When the temperature was higher (above 170℃), the thermal conductivities of the composites decreased with increase of the sizes of WC particles, and when the temperature was lower (40℃ and 105℃), the thermal conductivities of the composites did not change remarkably. The composite with Ni addition has lower thermal expansion coefficient and thermal conductivity than that of those without Ni.

Key wordscomposites    thermal expansion coefficient    thermal conductivity    particle-reinforced
收稿日期: 2013-12-02     
基金资助:* 国家自然科学基金51241002和51361019资助项目。
图1  表层复合材料取样位置示意图
图2  未添加Ni粉和添加Ni粉的碳化钨颗粒增强钢基表层复合材料的组织
图3  未添加Ni粉和添加Ni粉的碳化钨颗粒增强钢基表层复合材料X射线衍射分析结果
图4  表层复合材料不同位置的热膨胀系数随温度的变化曲线
图5  复合层中不同位置的显微组织
图6  不同WC颗粒粒度复合材料的热膨胀系数随温度的变化曲线
图7  复合材料试样的热导率随温度的变化曲线
1 WU RenJie,The prospective opportunities and challenges of composite materials in china during the next century, Acta Materiae Compositae Sinica, 17(1), 1(2000)
1 (吴人洁, 下世纪我国复合材料的发展机遇与挑战, 复合材料学报, 17(1), 1(2000))
2 A. G. Liu, M. H. Guo, M. H. Zhaoet al, Microstructures and wear resistance of large WC particles reinforced surface metal matrix composites produced by plasma melt injection, Surface and Coatings Technology, 201(18), 7978(2007)
3 YU Jiuming, XIAO Yunzhen, WANG Qunjiao,et al, New development of technology of clad metal, CHINESE JOURNAL OF MATERIALS RESEARCH, 14(1), 12(2000)
3 (于九明, 孝云祯, 王群骄等, 金属层状复合技术及其新进展, 材料研究学报, 14(1), 12(2000))
4 HUANG Haoke,LI Zulai, SHAN Quan, JIANG Yehua, HOU Zhandong, Interface remelting of tungsten carbide particles reinforced steel composite, CHINESE JOURNAL OF MATERIALS RESEARCH, 28(3), 191(2014)
4 (黄浩科, 李祖来, 山 泉, 蒋业华, 侯占东, 碳化钨/钢基复合材料的界面重熔. 材料研究学报, 28(3), 191(2014))
5 FU Hanguang, The research and application of high Cr cast steel guide treated by composite modification. SHANGHAI METALS, 20(3), 43(1998)
5 (符寒光, 复合变质处理髙铬铸铁导板的研究及应用, 上海金属, 20(3), 43(1998))
6 XIE Niansuo, LI Chunyue, FENG Xiaominget al. Study on Thermal Fatigue Properties of Functional Gradient Materials of SiCp/Cu, Foundry Technology, 31(6), 706(2010)
6 (解念锁, 李春月, 冯小明等, SiCp/Cu梯度复合材料热疲劳性能研究, 铸造技术, 31(6), 706(2010))
7 W. Li, Z. H. Chen, D. Chen. Thermal fatigue behavior of Al-Si/SiCp composite synthesized by spray deposition, Journal of Alloys and Compounds, 504S, S522(2010)
8 M. Schobel, W. Altendorfer, H. P, Degische.Internal stresses voids in SiC particle reinforced aluminum composites for heat sink applications, Composites Science and Technology, 71(5), 724(2011)
9 LI Wei, CHEN Ding.,CHEN Zhenhua, Small thermal fatigue crack propagation behavior of sprayed Al-Si/SiCp composite for brake disc, The Chinese Journal of Nonferrous Metals, 19, (9), 1563(2009)
9 (李 微, 陈 鼎, 陈振华, 喷射沉积Al-Si/SiCp制动盘材料的热疲劳微裂纹扩展行为, 中国有色金属学报, 19, (9), 1563(2009))
10 R. Q. Huang, Z. L. Li, Y. H. Jiang, R. Zhou, F. Gao,Thermal shock cracks initiation and propagation of WCP / steel substrate surface composite at 500℃, 2011 International Conference on Mechanics and Manufacturing Systems, 1487(109), 253(2011)
11 LI Zulai,JIANG Yehua, ZHOU Rong, YANG Hao, ZHANG Dongping, Process of thermal fatigue crack formation and expansion of WC/iron matrix surface composites, Acta Materiae Compositae Sinica, 25(2), 21(2008)
11 (李祖来, 蒋业华, 周 荣, 羊浩, 张冬平, WC/铁基表面复合材料的热疲劳裂纹形成过程, 复合材料学报, 25(2), 21(2008))
12 SUI Yudong,JIANG Yehua, LI Zulai, ZHOU Rong, SHAN Quan, Effects of nickel powder on microstructure and interface of WC/ steel matrix surface composites, Special Casting & Nonferrous Alloys, 31(6), 565(2011)
12 (隋育栋, 蒋业华, 李祖来, 周 荣, 山 泉, Ni 对 WC/钢基表面复合材料组织和界面的影响, 特种铸造及有色合金, 31(6), 565(2011)
13 Z. L. Li, Y. H. Jiang, R. Zhouet al, Dry three-body abrasive wear behavior of WC reinforced iron matrix surface composites produced by V-EPC infiltration casting process, Wear, 262(5-6), 649(2007)
14 MA Shuangyan,WANG Enze, LU Weiyuan, Study on Thermal Conductivity of Diamond/Copper Composite, Hot Working Technology, 37(4), 36(2008)
14 (马双彦, 王恩泽, 鲁伟员, 金刚石/铜复合材料热导率研究, 热加工工艺, 37(4), 36(2008))
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.