Please wait a minute...
金属学报  2021, Vol. 57 Issue (9): 1087-1106    DOI: 10.11900/0412.1961.2021.00120
  综述 本期目录 | 过刊浏览 |
基于增强相构型设计的石墨烯/Cu复合材料研究进展
赵乃勤(), 郭斯源, 张翔, 何春年, 师春生
天津大学 材料科学与工程学院 天津 300350
Progress on Graphene/Copper Composites Focusing on Reinforcement Configuration Design: A Review
ZHAO Naiqin(), GUO Siyuan, ZHANG Xiang, HE Chunnian, SHI Chunsheng
School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
引用本文:

赵乃勤, 郭斯源, 张翔, 何春年, 师春生. 基于增强相构型设计的石墨烯/Cu复合材料研究进展[J]. 金属学报, 2021, 57(9): 1087-1106.
Naiqin ZHAO, Siyuan GUO, Xiang ZHANG, Chunnian HE, Chunsheng SHI. Progress on Graphene/Copper Composites Focusing on Reinforcement Configuration Design: A Review[J]. Acta Metall Sin, 2021, 57(9): 1087-1106.

全文: PDF(6020 KB)   HTML
摘要: 

铜基复合材料具有优异的功能特性及力学性能,在电子、电工等领域具有广阔的应用前景。作为一类理想的增强相,石墨烯具有优异的综合性能以及二维结构特征。相比于其他如颗粒增强相、晶须增强相,石墨烯与Cu的性能匹配性更好,同时其在Cu基体中的分布结构具有更强的可设计性,可显著改善铜基复合材料的综合性能,因此利用新工艺实现石墨烯分布构型的调控设计成为当今铜基复合材料研究的热点。本文总结了近年来石墨烯在Cu基体中分布的构型(均匀构型、层状构型以及网络构型)及其相应的制备工艺,讨论了石墨烯构型对于铜基复合材料性能的影响,并展望了石墨烯构型设计的新思路,以及特殊构型石墨烯/Cu复合材料未来的发展趋势以及应用领域。

关键词 石墨烯铜基复合材料分布构型制备工艺综合性能    
Abstract

Copper matrix composites have extensive application prospects in electronics and electrical engineering because of their excellent functional and mechanical properties. Graphene has excellent properties and a two-dimensional structure, making it an ideal reinforcement material. Compared with other reinforcements such as particles and whiskers, graphene has better performance matching with copper. Moreover, its distribution in the copper matrix can be controlled well, which can significantly improve the comprehensive properties of the composite. Therefore, controlling the distribution of graphene using novel fabrication processes is essential. This review focuses on the configuration of graphene distributed in a copper matrix (uniform configuration, layered configuration, and network configuration) and the corresponding fabrication processes. The effects of different graphene configurations on the properties of various copper matrix composites are discussed. New ideas for graphene configuration design, future development trends, and potential applications of graphene/copper matrix composites with unique configurations are anticipated.

Key wordsgraphene    copper matrix composites    distribution configuration    fabrication process    comprehensive property
收稿日期: 2021-03-24     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(51771130)
作者简介: 赵乃勤,女,1961年生,教授,博士
图1  石墨烯增强铜基复合材料构型研究示意图
图2  Ag纳米颗粒修饰还原氧化石墨烯(RGO或rGO)/Cu复合材料制备流程图以及微观形貌表征[20]
图3  静电自组装法制备RGO/Cu复合材料示意图及形貌[23,24]
图4  电沉积法制备石墨烯纳米片(GNPs)/Cu复合材料示意图及形貌[25,26]
图5  分子级混合法制备RGO/Cu复合材料示意图及形貌[27]
图6  原位反应法制备石墨烯/铜基复合材料示意图[28~31]
图7  辅助外加工艺(累积叠轧、结构仿生法、真空抽滤)制备层状分布石墨烯/Cu复合材料示意图及微观形貌[32,33,36]
图8  原位排列工艺制备层状分布石墨烯/Cu复合材料示意图及微观形貌[38,39]
图9  三维网络石墨烯/Cu复合材料制备流程图及微观形貌[40,41]
图10  三维网络石墨烯/Cu复合材料制备流程图及微观形貌[42,43]
图11  石墨烯/Cu复合材料界面结合强度测试以及结构模型[27,47~49]
图12  石墨烯/Cu复合材料的压缩、拉伸以及模拟过程[33,56,57]
图13  三维连续石墨烯/Cu复合材料动态拉伸过程以及相应的模拟结果[42]
DistributionPreparation methodStrength ofTensileRef.
configurationcomposite materialelongation
MPa%
HomogenousRGO modified by Ag + balling milling + HPSRe: 33223.8[20]
distributionRm: 478
RGO modified by Cu/Ni + SPSRe(Cu): 16422[22]
Re(Ni): 18121
RGO modified by Ni + wet mixing + SPSRe: 26812[21]
Rm: 320
Gr/Cu modified by PVA + wet mixing + SPSRe: 1728[18]
Rm: 187
Cu modified by CTAB + SPSRm: 21218[23]
Flake Cu modified by CTAB + SPSRe: 17123[24]
Rm: 233
Molecular-level mixing + SPSRm: 33514[27]
In situ grown Gr + HPSRe: 14437[29]
Rm: 274
In situ grown graphene-like nanosheet + SPS + rollingRm: 41012[30]
In situ grown Gr + SPS + rollingRe: 3933.7[31]
Rm: 477
NetworkIn situ grown discontinuous 3D Gr-like network + SPSRe: 30129[40]
distributionRm: 318
In situ grown 3D Gr network + HPSRe: 29022[41]
Rm: 308
In situ grown 3D Gr network + HPS + rollingRe: 29225.4[42]
Rm: 319
In situ grown 3D Gr network + rolling + sinteringRe: 28116.5[43]
Rm: 354
LaminateBioinspired strategy + HPSRe: 23326[33]
distributionRm: 308
Flaky powder metallurgy + rollingRe: 55710.5[57]
Rm: 705
In situ grown of high content GNPs + HPS + rollingRe: 25514[39]
Rm: 274
In situ grown Gr + flaky powder metallurgy + HPSRe: 20032.3[38]
Rm: 378
表1  不同石墨烯分布构型/Cu复合材料的力学性能[18,20~24,27,29~31,33,38~43,57]
Distribution configurationPreparation method

Electrical conductivity

%IACS

Ref.
Homogenous distributionMechanical milling + HPS94[60]
Ultrasound assisted electroplating44[61]
In situ grown Mo2C@GNPs + HPS + rolling93[48]
Network distributionIn situ grown 3D Gr network + HPS + rolling103[42]
In situ grown 3D Gr network + rolling + sintering98[43]
Laminate distributionIn situ grown Gr + flaky powder metallurgy + HPS97.1[38]
Impregnation reduction + SPS90[62]
In situ grown Gr + HPS117[59]
表2  不同分布构型石墨烯/Cu复合材料电导率[38,42,43,48,59~62]
图14  石墨烯/Cu复合材料在薄膜材料以及导线方面的应用[67,68]
Distribution configurationPreparation method

Thermal conductivity

W·m-1·K-1

Ref.
Homogenous distributionElectrostatic self-assembly + HPS370-396[23]
Vacuum filtration + SPS275-325[36]
Network distributionIn situ grown 3D Gr network + HPS + rolling413[42]
Laminate distributionIn situ grown of high content GNPs + HPS + rolling441[39]
Vacuum filtration + vortex mixing + SPS525[36]
Vacuum filtration + vortex mixing + SPS458[37]
In situ grown Gr + HPS375[71]
In situ grown Gr + hot isostatic pressing + roll-to-roll394[72]
表3  不同分布构型石墨烯/Cu复合材料热导率[23,36,37,39,42,71,72]
1 Xu X Z, Yi D, Wang Z C, et al. Greatly enhanced anticorrosion of Cu by commensurate graphene coating [J]. Adv. Mater., 2018, 30: 1702944
2 Arnaud C, Lecouturier F, Mesguich D, et al. High strength-high conductivity double-walled carbon nanotube-copper composite wires [J]. Carbon, 2016, 96: 212
3 Uddin S M, Mahmud T, Wolf C, et al. Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites [J]. Compos. Sci. Technol., 2010, 70: 2253
4 Baig Z, Mamat O, Mustapha M. Recent progress on the dispersion and the strengthening effect of carbon nanotubes and graphene-reinforced metal nanocomposites: A review [J]. Crit. Rev. Solid State Mater. Sci., 2018, 43: 1
5 Kang Q P, He X B, Ren S B, et al. Microstructure and thermal properties of copper-diamond composites with tungsten carbide coating on diamond particles [J]. Mater. Charact., 2015, 105: 18
6 Deng H, Yi J H, Xia C, et al. Improving the mechanical properties of carbon nanotube-reinforced pure copper matrix composites by spark plasma sintering and hot rolling [J]. Mater. Lett., 2018, 210: 177
7 Chen X F, Tao J M, Yi J H, et al. Balancing the strength and ductility of carbon nanotubes reinforced copper matrix composites with microlaminated structure and interdiffusion interface [J]. Mater. Sci. Eng., 2018, A712: 790
8 Tjong S C. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets [J]. Mater. Sci. Eng., 2013, R74: 281
9 Feng M Q, Jia S G, Li S L, et al. Research progress of Cu/C composites [J]. Trans. Mater. Heat Treat., 2020, 41(12): 25
9 冯孟奇, 贾淑果, 李韶林等. 铜/碳复合材料的研究进展 [J]. 材料热处理学报, 2020, 41(12): 25
10 Fan T X, Liu Y, Yang K M, et al. Recent progress on interfacial structure optimization and their influencing mechanism of carbon reinforced metal matrix composites [J]. Acta Metall. Sin., 2019, 55: 16
10 范同祥, 刘 悦, 杨昆明等. 碳/金属复合材料界面结构优化及界面作用机制的研究进展 [J]. 金属学报, 2019, 55: 16
11 Yoon D, Son Y W, Cheong H. Negative thermal expansion coefficient of graphene measured by Raman spectroscopy [J]. Nano Lett., 2011, 11: 3227
12 Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene [J]. Nature, 2005, 438: 197
13 Sun Z Z, Yan Z, Yao J, et al. Growth of graphene from solid carbon sources [J]. Nature, 2010, 468: 549
14 Wang G R, Dai Z H, Xiao J K, et al. Bending of multilayer van der Waals materials [J]. Phys. Rev. Lett., 2019, 123: 116101
15 Lee C, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science, 2008, 321: 385
16 Zhao N Q, Liu X H, Pu B W. Progress on multi-dimensional carbon nanomaterials reinforced aluminum matrix composites: A review [J]. Acta Metall. Sin., 2019, 55: 1
16 赵乃勤, 刘兴海, 蒲博闻. 多维度碳纳米相增强铝基复合材料研究进展 [J]. 金属学报, 2019, 55: 1
17 Geng L, Fan G H. Progress on strengthening and toughening mechanism for metal matrix composites by configuration design [J]. Mater. China, 2016, 35: 686
17 耿 林, 范国华. 金属基复合材料的构型强韧化研究进展 [J]. 中国材料进展, 2016, 35: 686
18 Jiang R R, Zhou X F, Fang Q L, et al. Copper-graphene bulk composites with homogeneous graphene dispersion and enhanced mechanical properties [J]. Mater. Sci. Eng., 2016, A654: 124
19 Jia Z F, Li H Q, Zhao Y, et al. Electrical and mechanical properties of poly(dopamine)-modified copper/reduced graphene oxide composites [J]. J. Mater. Sci., 2017, 52: 11620
20 Luo H B, Sui Y W, Qi J Q, et al. Mechanical enhancement of copper matrix composites with homogeneously dispersed graphene modified by silver nanoparticles [J]. J. Alloys Compd., 2017, 729: 293
21 Tang Y X, Yang X M, Wang R R, et al. Enhancement of the mechanical properties of graphene-copper composites with graphene-nickel hybrids [J]. Mater. Sci. Eng., 2014, A599: 247
22 Zhang D D, Zhan Z J. Preparation of graphene nanoplatelets-copper composites by a modified semi-powder method and their mechanical properties [J]. J. Alloys Compd., 2016, 658: 663
23 Gao X, Yue H Y, Guo E J, et al. Mechanical properties and thermal conductivity of graphene reinforced copper matrix composites [J]. Powder Technol., 2016, 301: 601
24 Shao G S, Liu P, Zhang K, et al. Mechanical properties of graphene nanoplates reinforced copper matrix composites prepared by electrostatic self-assembly and spark plasma sintering [J]. Mater. Sci. Eng., 2019, A739: 329
25 Cui R, Han Y, Zhu Z X, et al. Investigation of the structure and properties of electrodeposited Cu/graphene composite coatings for the electrical contact materials of an ultrahigh voltage circuit breaker [J]. J. Alloys Compd., 2019, 777: 1159
26 Pavithra C L P, Sarada B V, Rajulapati K V, et al. A new electrochemical approach for the synthesis of copper-graphene nanocomposite foils with high hardness [J]. Sci. Rep., 2014, 4: 4049
27 Hwang J, Yoon T, Jin S H, et al. Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process [J]. Adv. Mater., 2013, 25: 6724
28 Wang S Y, Han S B, Xin G Q, et al. High-quality graphene directly grown on Cu nanoparticles for Cu-graphene nanocomposites [J]. Mater. Des., 2018, 139: 181
29 Chen Y K, Zhang X, Liu E Z, et al. Fabrication of in-situ grown graphene reinforced Cu matrix composites [J]. Sci. Rep., 2016, 6: 19363
30 Yang Z Y, Wang L D, Cui Y, et al. High strength and ductility of graphene-like carbon nanosheet/copper composites fabricated directly from commercial oleic acid coated copper powders [J]. Nanoscale, 2018, 10: 16990
31 Wang M, Wang L D, Sheng J, et al. Direct synthesis of high-quality graphene on Cu powders from adsorption of small aromatic hydrocarbons: A route to high strength and electrical conductivity for graphene/Cu composite [J]. J. Alloys Compd., 2019, 798: 403
32 Yao G C, Mei Q S, Li J Y, et al. Cu/C composites with a good combination of hardness and electrical conductivity fabricated from Cu and graphite by accumulative roll-bonding [J]. Mater. Des., 2016, 110: 124
33 Xiong D B, Cao M, Guo Q, et al. Graphene-and-copper artificial nacre fabricated by a preform impregnation process: Bioinspired strategy for strengthening-toughening of metal matrix composite [J]. ACS Nano, 2015, 9: 6934
34 Xiong D B, Cao M, Guo Q, et al. High content reduced graphene oxide reinforced copper with a bioinspired nano-laminated structure and large recoverable deformation ability [J]. Sci. Rep., 2016, 6: 33801
35 Yang Z Y, Wang L D, Shi Z D, et al. Preparation mechanism of hierarchical layered structure of graphene/copper composite with ultrahigh tensile strength [J]. Carbon, 2018, 127: 329
36 Chu K, Wang X H, Wang F, et al. Largely enhanced thermal conductivity of graphene/copper composites with highly aligned graphene network [J]. Carbon, 2018, 127: 102
37 Chu K, Wang X H, Li Y B, et al. Thermal properties of graphene/metal composites with aligned graphene [J]. Mater. Des., 2018, 140: 85
38 Cao M, Xiong D B, Tan Z Q, et al. Aligning graphene in bulk copper: Nacre-inspired nanolaminated architecture coupled with in-situ processing for enhanced mechanical properties and high electrical conductivity [J]. Carbon, 2017, 117: 65
39 Guo S, Zhang X, Shi C, et al. In situ synthesis of high content graphene nanoplatelets reinforced Cu matrix composites with enhanced thermal conductivity and tensile strength [J]. Powder Technol., 2020, 362: 126
40 Zhang X, Shi C S, Liu E Z, et al. Achieving high strength and high ductility in metal matrix composites reinforced with a discontinuous three-dimensional graphene-like network [J]. Nanoscale, 2017, 9: 11929
41 Chen Y K, Zhang X, Liu E Z, et al. Fabrication of three-dimensional graphene/Cu composite by in-situ CVD and its strengthening mechanism [J]. J. Alloys Compd., 2016, 688: 69
42 Zhang X, Xu Y X, Wang M C, et al. A powder-metallurgy-based strategy toward three-dimensional graphene-like network for reinforcing copper matrix composites [J]. Nat. Commun., 2020, 11: 2775
43 Qiao Z J, Zhou T, Kang J L, et al. Three-dimensional interpenetrating network graphene/copper composites with simultaneously enhanced strength, ductility and conductivity [J]. Mater. Lett., 2018, 224: 37
44 Luo H B, Sui Y W, Qi J Q, et al. Copper matrix composites enhanced by silver/reduced graphene oxide hybrids [J]. Mater. Lett., 2017, 196: 354
45 Zhu Y B, Bai H, Xue C, et al. Thermal conductivity and mechanical properties of a flake graphite/Cu composite with a silicon nano-layer on a graphite surface [J]. RSC Adv., 2016, 6: 98190
46 Chu K, Wang J, Liu Y P, et al. Graphene defect engineering for optimizing the interface and mechanical properties of graphene/copper composites [J]. Carbon, 2018, 140: 112
47 Zhang X, Shi C S, Liu E Z, et al. Effect of interface structure on the mechanical properties of graphene nanosheets reinforced copper matrix composites [J]. ACS Appl. Mater. Interfaces, 2018, 10: 37586
48 Guo S Y, Zhang X, Shi C S, et al. Enhanced mechanical properties and electrical conductivity of graphene nanoplatelets/Cu composites by in situ formation of Mo2C nanoparticles [J]. Mater. Sci. Eng., 2019, A766: 138365
49 Chu K, Wang F, Li Y B, et al. Interface structure and strengthening behavior of graphene/CuCr composites [J]. Carbon, 2018, 133: 127
50 Zhang X, Zhao N Q, He C N. The superior mechanical and physical properties of nanocarbon reinforced bulk composites achieved by architecture design—A review [J]. Prog. Mater. Sci., 2020, 113: 100672
51 Tian Y Z, Wu S D, Zhang Z F, et al. Microstructural evolution and mechanical properties of a two-phase Cu-Ag alloy processed by high-pressure torsion to ultrahigh strains [J]. Acta Mater., 2011, 59: 2783
52 Shin S E, Choi H J, Shin J H, et al. Strengthening behavior of few-layered graphene/aluminum composites [J]. Carbon, 2015, 82: 143
53 Kim W J, Lee T J, Han S H. Multi-layer graphene/copper composites: Preparation using high-ratio differential speed rolling, microstructure and mechanical properties [J]. Carbon, 2014, 69: 55
54 Sun C, Zhang X, Zhao N Q, et al. Influence of spark plasma sintering temperature on the microstructure and strengthening mechanisms of discontinuous three-dimensional graphene-like network reinforced Cu matrix composites [J]. Mater. Sci. Eng., 2019, A756: 82
55 Chu K, Wang F, Wang X H, et al. Anisotropic mechanical properties of graphene/copper composites with aligned graphene [J]. Mater. Sci. Eng., 2018, A713: 269
56 Kim Y, Lee J, Yeom M S, et al. Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites [J]. Nat. Commun., 2013, 4: 2114
57 Li Z, Wang H T, Guo Q, et al. Regain strain-hardening in high-strength metals by nanofiller incorporation at grain boundaries [J]. Nano Lett., 2018, 18: 6255
58 Güler Ö, Bağcı N. A short review on mechanical properties of graphene reinforced metal matrix composites [J]. J. Mater. Res. Technol., 2020, 9: 6808
59 Cao M, Xiong D B, Yang L, et al. Ultrahigh electrical conductivity of graphene embedded in metals [J]. Adv. Funct. Mater., 2019, 29: 1806792
60 Salvo C, Mangalaraja R V, Udayabashkar R, et al. Enhanced mechanical and electrical properties of novel graphene reinforced copper matrix composites [J]. J. Alloys Compd., 2019, 777: 309
61 Behera A K, Mallik A. Ultrasound assisted electroplating of nano-composite thin film of Cu matrix with electrochemically in-house synthesized few layer graphene nano-sheets as reinforcement [J]. J. Alloys Compd., 2018, 750: 587
62 Chen F Y, Ying J M, Wang Y F, et al. Effects of graphene content on the microstructure and properties of copper matrix composites [J]. Carbon, 2016, 96: 836
63 Kim S J, Shin D H, Choi Y S, et al. Ultrastrong graphene-copper core-shell wires for high-performance electrical cables [J]. ACS Nano, 2018, 12: 2803
64 Shuai J, Xiong L Q, Zhu L, et al. Enhanced strength and excellent transport properties of a superaligned carbon nanotubes reinforced copper matrix laminar composite [J]. Composites, 2016, 88A: 148
65 Zhang B B, Tao N R, Lu K. A high strength and high electrical conductivity bulk Cu-Ag alloy strengthened with nanotwins [J]. Scr. Mater., 2017, 129: 39
66 Mao P Y, Qiao J X, Zhao Y, et al. Ultrahigh thermal stability of carbon encapsulated Cu nanograin on a carbon nanotube scaffold [J]. Carbon, 2021, 172: 712
67 Lee H C, Jo M, Lim H, et al. Toward near-bulk resistivity of Cu for next-generation nano-interconnects: Graphene-coated Cu [J]. Carbon, 2019, 149: 656
68 Ahn Y, Jeong Y, Lee D, et al. Copper nanowire-graphene core-shell nanostructure for highly stable transparent conducting electrodes [J]. ACS Nano, 2015, 9: 3125
69 Boden A, Boerner B, Kusch P, et al. Nanoplatelet size to control the alignment and thermal conductivity in copper-graphite composites [J]. Nano Lett., 2014, 14: 3640
70 Firkowska I, Boden A, Boerner B, et al. The origin of high thermal conductivity and ultralow thermal expansion in copper-graphite composites [J]. Nano Lett., 2015, 15: 4745
71 Cao H J, Xiong D B, Tan Z Q, et al. Thermal properties of in situ grown graphene reinforced copper matrix laminated composites [J]. J. Alloys Compd., 2019, 771: 228
72 Yang K M, Ma Y C, Zhang Z Y, et al. Anisotropic thermal conductivity and associated heat transport mechanism in roll-to-roll graphene reinforced copper matrix composites [J]. Acta Mater., 2020, 197: 342
73 Cho S C, Kikuchi K, Kawasaki A. On the role of amorphous intergranular and interfacial layers in the thermal conductivity of a multi-walled carbon nanotube-copper matrix composite [J]. Acta Mater., 2012, 60: 726
74 Kim K T, Eckert J, Liu G, et al. Influence of embedded-carbon nanotubes on the thermal properties of copper matrix nanocomposites processed by molecular-level mixing [J]. Scr. Mater., 2011, 64: 181
75 Cho S C, Kikuchi K, Miyazaki T, et al. Multiwalled carbon nanotubes as a contributing reinforcement phase for the improvement of thermal conductivity in copper matrix composites [J]. Scr. Mater., 2010, 63: 375
76 Chu K, Wu Q Y, Jia C C, et al. Fabrication and effective thermal conductivity of multi-walled carbon nanotubes reinforced Cu matrix composites for heat sink applications [J]. Compos. Sci. Technol., 2010, 70: 298
77 He J S, Wang X T, Zhang Y, et al. Thermal conductivity of Cu-Zr/diamond composites produced by high temperature-high pressure method [J]. Composites, 2015, 68B: 22
78 Bai G Z, Li N, Wang X T, et al. High thermal conductivity of Cu-B/diamond composites prepared by gas pressure infiltration [J]. J. Alloys Compd., 2018, 735: 1648
79 Chang G, Sun F Y, Duan J L, et al. Effect of Ti interlayer on interfacial thermal conductance between Cu and diamond [J]. Acta. Mater., 2018, 160: 235
80 Li J W, Zhang H L, Wang L H, et al. Optimized thermal properties in diamond particles reinforced copper-titanium matrix composites produced by gas pressure infiltration [J]. Composites, 2016, 91A: 189
[1] 潘成成, 张翔, 杨帆, 夏大海, 何春年, 胡文彬. 三维石墨烯/Cu复合材料在模拟海水环境中的腐蚀和空蚀行为[J]. 金属学报, 2022, 58(5): 599-609.
[2] 张显程, 张勇, 李晓, 王梓萌, 贺琛贇, 陆体文, 王晓坤, 贾云飞, 涂善东. 异构金属材料的设计与制造[J]. 金属学报, 2022, 58(11): 1399-1415.
[3] 林彰乾, 郑伟, 李浩, 王东君. 放电等离子烧结TA15钛合金及石墨烯增强TA15复合材料微观组织与力学性能[J]. 金属学报, 2021, 57(1): 111-120.
[4] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[5] 张北江,黄烁,张文云,田强,陈石富. 变形高温合金盘材及其制备技术研究进展[J]. 金属学报, 2019, 55(9): 1095-1114.
[6] 张婷,赵宇宏,陈利文,梁建权,李沐奚,侯华. 触变注射成形法制备石墨烯纳米片增强镁基复合材料[J]. 金属学报, 2019, 55(5): 638-646.
[7] 任建强, 梁淑华, 姜伊辉, 杜翔. 原位(TiB2-TiB)/Cu复合材料组织与性能研究[J]. 金属学报, 2019, 55(1): 126-132.
[8] 袁超,周兰章,李谷松,郭建亭. 高性能NiAl共晶合金JJ­­—3[J]. 金属学报, 2013, 49(11): 1347-1355.
[9] 李殿中; 张玉妥; 刘实; 李依依 . 材料制备工艺的计算机模拟[J]. 金属学报, 2001, 37(5): 449-452 .
[10] 车晓舟;胡赓祥;曹兴国;戴礼智. 非晶态Fe-B-Si合金的退火脆化[J]. 金属学报, 1994, 30(24): 532-536.