Please wait a minute...
金属学报  2018, Vol. 54 Issue (12): 1767-1776    DOI: 10.11900/0412.1961.2018.00051
  本期目录 | 过刊浏览 |
层间温度对9%Cr热强钢管道多层多道焊接头残余应力的影响
胡磊1, 王学1,2(), 尹孝辉1, 刘洪3, 马群双1
1 安徽工业大学材料科学与工程学院 马鞍山 243032
2 武汉大学动力与机械学院 武汉 430072
3 东方电气集团东方锅炉股份有限公司 自贡 643001
Influence of Inter-Pass Temperature on Residual Stress in Multi-Layer and Multi-Pass Butt-Welded 9%Cr Heat-Resistant Steel Pipes
Lei HU1, Xue WANG1,2(), Xiaohui YIN1, Hong LIU3, Qunshuang MA1
1 School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
2 School of Power and Mechanics, Wuhan University, Wuhan 430072, China
3 Dong Fang Boiler Group Co., Ltd., Dong Fang Electric Corporation, Zigong 643001, China
引用本文:

胡磊, 王学, 尹孝辉, 刘洪, 马群双. 层间温度对9%Cr热强钢管道多层多道焊接头残余应力的影响[J]. 金属学报, 2018, 54(12): 1767-1776.
Lei HU, Xue WANG, Xiaohui YIN, Hong LIU, Qunshuang MA. Influence of Inter-Pass Temperature on Residual Stress in Multi-Layer and Multi-Pass Butt-Welded 9%Cr Heat-Resistant Steel Pipes[J]. Acta Metall Sin, 2018, 54(12): 1767-1776.

全文: PDF(10027 KB)   HTML
摘要: 

使用有限元法研究了不同层间温度(IPT)时,在9%Cr热强钢管道多层多道焊接头残余应力演化中马氏体相变作用的差异,揭示了层间温度对残余应力作用的机理。结果表明,提高层间温度可以显著降低接头内的残余拉应力,特别是管道中部区域焊缝(WM)内的残余拉应力降低明显。其机理主要有2方面:一是提高层间温度可保留较高含量的奥氏体,屈服强度低的奥氏体在冷却时积累的残余拉应力较低;二是高的层间温度阻止了马氏体相变在每道焊道焊完后立即进行,从而避免了马氏体相变降低拉应力的效果被后焊焊道的焊接热循环所消除和在随后焊道的焊接热循环中重新积累较大的拉应力。层间温度对9%Cr热强钢管道多层多道焊残余应力分布的影响取决于热收缩和马氏体相变的综合作用,当层间温度较低(低于马氏体转变终了温度Mf)时,热收缩占主导作用,此时接头的大部分区域以残余拉应力为主,只在末道焊道焊缝及其热影响区(HAZ)内形成较大的压应力;当层间温度较高(高于马氏体转变开始温度Ms)时,马氏体相变占主导作用,此时接头以残余压应力为主。

关键词 9%Cr热强钢多层多道焊层间温度残余应力数值模拟    
Abstract

9%Cr heat-resistant steels have been abundantly used in boilers of modern thermal plants. The 9%Cr steel components in thermal plant boilers are usually assembled by fusion welding. Many of the degradation mechanisms of welded joints can be aggravated by welding residual stress. Tensile residual stress in particular can exacerbate cold cracking tendency, fatigue crack development and the onset of creep damage in heat-resistant steels. It has been recognized that welding residual stress can be mitigated by low temperature martensitic transformation in 9%Cr heat-resistant steel. Nevertheless, the stress mitigation effect seems to be confined around the final weld pass in multi-layer and multi-pass 9%Cr steel welded pipes. The purpose of this work is to investigate the method to break through this confine. Influence of martensitic transformation on welding stress evolution in multi-layer and multi-pass butt-welded 9%Cr heat-resistant steel pipes for different inter-pass temperatures (IPT) was investigated through finite element method, and the influential mechanism of IPT on welding residual stress was revealed. The results showed that tensile residual stress in weld metal (WM) and heat affected zone (HAZ), especially the noteworthy tensile stress in WM at pipe central, was effectively mitigated with the increasing of IPT. The reasons lie in two aspects, firstly, there is more residual austenite in the case of higher IPT, as a result, lower tensile stress is accumulated during cooling due to the lower yield strength of austenite; secondly, the higher IPT suppresses the martensitic transformation during cooling of each weld pass, thus the tensile stress mitigation due to martensitic transformation was avoided to be eliminated by welding thermal cycles of subsequent weld passes and reaccumulating tensile residual stress. The influence of IPT on welding residual stress relies on the combined contribution of thermal contraction and martensitic transformation. When the IPT is lower than martensite transformation finishing temperature (Mf), thermal contraction plays the dominant role in the formation of welding residual stress, and tensile stress was formed in the majority of weld zone except the final weld pass. While, compressive stress was formed in almost whole weld zone due to martensitic transformation when the IPT is higher than martensite transformation starting temperature (Ms).

Key words9%Cr heat-resistant steel    multi-layer and multi-pass welding    inter-pass temperature    residual stress    numerical simulation
收稿日期: 2018-02-02     
ZTFLH:  TG404  
基金资助:国家自然科学基金项目Nos.51374153和51574181及四川省科技计划项目No.2018JY0668
作者简介:

作者简介 胡 磊,男,1988年生,博士

图1  有限元计算模型和焊缝附近网格划分
图2  图1中点A在前2道焊道中的焊接热循环
图3  4组计算中管道纵截面内轴向和环向残余应力计算结果
图4  层间温度对管道壁厚方向残余应力分布的影响
图5  Satoh实验计算模型与约束条件示意图
Case Tp1 / ℃ Ti / ℃ Tp2 / ℃
I 1350 - -
II 800 - -
III 1350 102 1350
IV 1350 375 1350
V 1350 102 800
VI 1350 375 800
表1  Satoh实验的计算条件
图6  Satoh实验模拟结果
图7  第3道焊缝焊完后的轴向和环向应力分布
图8  第7道焊缝焊完后的轴向和环向应力分布
[1] Abson D J, Rothwell J S.Review of type IV cracking of weldments in 9-12%Cr creep strength enhanced ferritic steels[J]. Int. Mater. Rev., 2013, 58: 437
[2] Wang X, Wang X, Li H J, et al.Laves phase precipitation behavior in the simulated fine-grained heat-affected zone of creep strength enhanced ferritic steel P92 and its role in creep void nucleation and growth[J]. Weld. World, 2017, 61: 231
[3] Liu W, Lu F G, Wei Y H, et al.Special zone in multi-layer and multi-pass welded metal and its role in the creep behavior of 9Cr-1Mo welded joint[J]. Mater. Des., 2016, 108: 195
[4] Paddea S, Francis J A, Paradowska A M, et al.Residual stress distributions in a P91 steel-pipe girth weld before and after post weld heat treatment[J]. Mater. Sci. Eng., 2012, A534: 663
[5] Francis J A, Bhadeshia H K D H, Withers P J. Welding residual stresses in ferritic power plant steels[J]. Mater. Sci. Technol., 2007, 23: 1009
[6] Ooi S W, Garnham J E, Ramjaun T I.Review: Low transformation temperature weld filler for tensile residual stress reduction[J]. Mater. Des., 2014, 56: 773
[7] Wang X, Li Y, Ren Y Y, et al.Effect of Laves phase precipitation on redistribution of alloying elements in P92 steel[J]. Acta Metall. Sin., 2014, 50: 1203(王学, 李勇, 任遥遥等. Laves相析出对P92钢合金元素再分布的影响[J]. 金属学报, 2014, 50: 1203)
[8] Yang J P, Guo J, Qiao Y X.Study on welding procedure of P92 steel using in ultra supercritical plants[J]. Proc. CSEE, 2007, 27(23): 55(杨建平, 郭军, 乔亚霞. 超超临界机组用P92钢焊接技术的研究[J]. 中国电机工程学报, 2007, 27(23): 55)
[9] Qiao Y X, Guo J.P92 steel (martensitic steel) welding used for power plant boilers[J]. Electr. Power Constr., 2007, 28(6): 87(乔亚霞, 郭军. 电站锅炉用马氏体耐热钢P92钢的焊接[J]. 电力建设, 2007, 28(6): 87)
[10] Richardot D, Vaillant J C, Arbab A, et al.The T92/P92 Book[M]. Boulogne: Vallourec & Mannesmann Tubes, 2000: 7
[11] Haarmann K, Vailant J C, Vandenberghe B, et al.The T91/P91 Book[M]. Boulogne: Vallourec & Mannesmann Tubes, 1999: 6
[12] Wang X, Hu L, Chen D X, et al.Effect of martensitic transformation on stress evolution in multi-pass butt-welded 9%Cr heat-resistant steel pipes[J]. Acta Metall. Sin., 2017, 53: 888(王学, 胡磊, 陈东旭等. 马氏体相变对9%Cr热强钢管道多道焊接头残余应力演化的影响[J]. 金属学报, 2017, 53: 888)
[13] Wang Z Y, Li S J, Hao X J, et al.Ultrasonic testing of interlayer cracks in P91 butt weld[J]. Nondestr. Test., 2011, 33(5): 54(王志永, 李树军, 郝晓军等. P91钢管对接焊缝层间裂纹的超声波检测[J]. 无损检测, 2011, 33(5): 54)
[14] Chen J P, Yang W F, Han T, et al.The ultrasonic testing of micro-crack in P91/92 steel pipe butt weld[J]. Nondestr. Test., 2016, 38(8): 44(陈君平, 杨文峰, 韩腾等. P91/P92钢管道对接焊缝微裂纹的超声波检测[J]. 无损检测, 2016, 38(8): 44)
[15] Javadi Y, Smith M C, Abburi Venkata K, et al.Residual stress measurement round robin on an electron beam welded joint between austenitic stainless steel 316L(N) and ferritic steel P91 [J]. Int. J. Press. Vessels Pip., 2017, 154: 41
[16] Pu X W, Zhang C H, Li S, et al.Simulating welding residual stress and deformation in a multi-pass butt-welded joint considering balance between computing time and prediction accuracy[J]. Int. J. Adv. Manuf. Technol., 2017, 93: 2215
[17] Deng D A, Ren S D, Li S, et al.Influence of multi-thermal cycle and constraint condition on residual stress in P92 steel weldment[J]. Acta Metall. Sin., 2017, 53: 1532(邓德安, 任森栋, 李索等. 多重热循环和约束条件对P92钢焊接残余应力的影响[J]. 金属学报, 2017, 53: 1532)
[18] Galler J P, Dupont J N, Siefert J A.Influence of alloy type, peak temperature and constraint on residual stress evolution in Satoh test[J]. Sci. Technol. Weld. Joining, 2016, 21: 106
[19] Thomas S H, Liu S.Analysis of low transformation temperature welding (LTTW) consumables-distortion control and evolution of stresses[J]. Sci. Technol. Weld. Joining, 2014, 19: 392
[20] Yaghi A H, Hyde T H, Becker A A, et al.Finite element simulation of welding and residual stresses in a P91 steel pipe incorporating solid-state phase transformation and post-weld heat treatment[J]. J. Strain Anal. Eng. Des., 2008, 43: 275
[21] Koistinen D P, Marburger R E.A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels[J]. Acta Metall., 1959, 7: 59
[22] Wang X, Pan Q G, Tao Y S, et al.Type IV creep rupture characteristics of P92 steel weldment[J]. Acta Metall. Sin., 2012, 48: 427(王学, 潘乾刚, 陶永顺等. P92钢焊接接头IV型蠕变断裂特性[J]. 金属学报, 2012, 48: 427)
[23] Yaghi A H, Hyde T H, Becker A A, et al.Finite element simulation of welded P91 steel pipe undergoing post-weld heat treatment[J]. Sci. Technol. Weld. Joining, 2011, 16: 232
[24] Deng D A, Zhang Y B, Li S, et al.Influence of solid-state phase transformation on residual stress in P92 steel welded joint[J]. Acta Metall. Sin., 2016, 52: 394(邓德安, 张彦斌, 李索等. 固态相变对P92钢焊接接头残余应力的影响[J]. 金属学报, 2016, 52: 394)
[25] Li S, Ren S D, Zhang Y B, et al.Numerical investigation of formation mechanism of welding residual stress in P92 steel multi-pass joints[J]. J. Mater. Process. Technol., 2017, 244: 240
[26] Radaj D.Heat Effects of Welding: Temperature Field, Residual Stress, Distortion[M]. Berlin: Springer-Verlag, 1992: 174
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展[J]. 金属学报, 2023, 59(9): 1159-1172.
[3] 李时磊, 李阳, 王友康, 王胜杰, 何伦华, 孙光爱, 肖体乔, 王沿东. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价[J]. 金属学报, 2023, 59(8): 1001-1014.
[4] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[5] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[6] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[7] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[8] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[9] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.
[10] 张新房, 向思奇, 易坤, 郭敬东. 脉冲电流调控金属固体中的残余应力[J]. 金属学报, 2022, 58(5): 581-598.
[11] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.
[12] 骆文泽, 胡龙, 邓德安. SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发[J]. 金属学报, 2022, 58(10): 1334-1348.
[13] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[14] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
[15] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.