Please wait a minute...
金属学报  2016, Vol. 52 Issue (1): 71-77    DOI: 10.11900/0412.1961.2015.00268
  本期目录 | 过刊浏览 |
a-Ti在原位透射电镜拉伸变形过程中位错的滑移系确定*
石晶,郭振玺,隋曼龄()
北京工业大学固体微结构与性能研究所, 北京 100124
SLIP SYSTEM DETERMINATION OF DISLOCATIONS IN a-Ti DURING IN SITU TEM TENSILE DEFORMATION
Jing SHI,Zhenxi GUO,Manling SUI()
Insitute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124, China
引用本文:

石晶,郭振玺,隋曼龄. a-Ti在原位透射电镜拉伸变形过程中位错的滑移系确定*[J]. 金属学报, 2016, 52(1): 71-77.
Jing SHI, Zhenxi GUO, Manling SUI. SLIP SYSTEM DETERMINATION OF DISLOCATIONS IN a-Ti DURING IN SITU TEM TENSILE DEFORMATION[J]. Acta Metall Sin, 2016, 52(1): 71-77.

全文: PDF(4483 KB)   HTML
摘要: 

利用聚焦离子束(FIB)对hcp结构金属a-Ti进行纳米尺寸单晶拉伸样品定向切割, 利用特制的双金属片拉伸器在TEM中将单晶样品沿[2110]方向进行原位拉伸. 结果表明, 在拉伸过程中, 随着应变量的增加, a-Ti先后产生了3类不同Burgers矢量的滑移位错: 柱面位错及2类锥面位错, 滑移位错的Burgers矢量主要通过原位TEM双束衍衬像确定. 针对hcp结构的低对称性和Burgers矢量可能与多种滑移面相组合的特点, 先利用TEM与EBSD确定晶体取向以及样品的拉伸方向, 再通过计算位错Burgers矢量对应的多个滑移系的Schmid因子, 确定a-Ti拉伸变形过程中开动的滑移系.

关键词 a-Ti原位拉伸TEMhcp结构位错滑移Schmid因子    
Abstract

Titanium and its alloys have been widely used in automotive industry and aerospace field due to their high mechanical strength and low density. It has been known that a-Ti has an hcp crystal structure and silp in hcp structure is limited because of only 3 independent slip systems. Therefore, twinning is active in hcp structure and the deformation behavior of hcp metals is very complex by the presence of both dislocation slip and twinning. In sub-micron sized a-Ti sample, deformation twins are difficult to produce and the deformation mechanism is mainly dislocation slip. However, it is hard to identify the activated dislocation slip system in a-Ti, as a few avaliable slip planes is corresponding to one slip direction. Usually there are two ways to identify the activated slip systems. One is to deduce the slip plane and the slip direction based on the loading direction and the crystal orientation. But this method is not accurate because of many possible groups of slip planes and slip directions in hcp structure. The other one is judging the Burgers vector of the dislocation under certain diffraction vectors based on Bragg's law by using TEM. It takes time and can only determine the slip direction of dislocation. Therefore, it is important to find an effective method to identify the active slip system more simply and accurately during deformation process. In this work, a nanometer sized tensile sample of a-Ti single crystal was fabricated by using focused ion beam (FIB) technique. In situ tensile test was carried out along [2110] of a-Ti sample by using a homemade bimetal stretching device in TEM. It has been found that three types of the dislocations, one prismatic dislocation and two pyramidal dislocations, were activated in order with strain increasing during tensile process.The Burgers vectors of dislocations were determined by two-beam diffraction contrast imaging in TEM. For hcp structure, one Burgers vector may have the characteristics of a variety of slip planes. By EBSD technique, the crystalline orientation and the loading direction in TEM were indexed accurately and Schmid factors for all the possible slip systems were calculated corresponding to each Burgers vector. Then, the activated slip systems during in situ TEM tensile process are determined by Burgers vector and Schmid factor. This work offers an effective method to identify the activated slip system during tensile process and get more understanding about the plastic deformation mechanism of a-Ti and hcp metals.

Key wordsa-Ti    in situ tensile    TEM    hcp structure    dislocation slip    Schmid factor
收稿日期: 2015-05-21     
基金资助:国家自然科学基金项目11374028, 北京市自然科学基金科技重点项目和教育部长江学者奖励计划项目资助
图1  TEM双金属片拉伸器、样品晶体学取向和应力加载方向示意图以及聚焦离子束(FIB)加工后a-Ti样品的SEM像
图2  a-Ti单晶原位拉伸变形过程中的TEM视频截图
图3  a-Ti单晶拉伸变形后的SAED谱和衍射矢量为g= [1ˉ100] , g= [01ˉ11] , g= [1ˉ011] 和g= [202ˉ1ˉ] 的双束衍衬像
图4  a-Ti单晶在拉伸过程中<a>位错滑移的TEM视频截图
图5  a-Ti单晶在拉伸过程中2号位错<c+a>滑移的TEM视频截图及加载方向与晶体取向原理图
图6  a-Ti单晶拉伸过程中3号位错<c+a>滑移的TEM视频截图及加载方向与晶体取向示意图
[1210] m [2110] m [1213] m [2113] m [121 3] m [21 13] m
(1010) 0.433 (0110) 0 (011 1) 0 (1011) 0.405 (0111) 0 (101 1) 0.405
(0002) 0 (0002) 0 (1101) 0.203 (1101) 0.405 (1101) 0.203 (1101) 0.405
(1011) 0.380 (0111) 0 (1212) 0.113 (2112) 0.451 (1212) 0.113 (2112) 0.451
(101 1) 0.380 (011 1) 0 (112 1) 0.127 (1121) 0.254 (1121) 0.127 (112 1) 0.254
(2111) 0.255 (1211) 0.254 (2111) 0.255 (1211) 0.254
表1  在[1ˉ100] 衍射条件下可见位错的滑移方向、可能的滑移面以及相应的Schmid因子(m)
[1] Zherebtsov S V, Dyakonov G S, Salem A A, Sokolenko V I, Salishchev G A, Semiatin S L. Acta Mater, 2013; 61: 1167
[2] Zong H X, Lookman T, Ding X D, Luo S N, Sun J. Acta Mater, 2014; 65: 10
[3] Zeng Z P, Jonsson S, Roven H J. Acta Mater, 2009; 57: 5822
[4] Tirry W, Nixon M, Cazacu O, CogheL F, Rabet L. Scr Mater, 2011; 64: 840
[5] Gurao N P, Kapoor R, Suwas S. Acta Mater, 2011; 5: 3431
[6] Kim I, Kim J, Shin D H, Liao X Z, Zhu Y T. Scr Mater, 2003; 48: 813
[7] Salem A A, Kalidindi S R, Doherty R D. Acta Mater, 2003; 51: 4225
[8] Cai S Q, Li Z R, Xia Y M. Physica, 2008; 403B: 1660
[9] Farenc S, Caillard D, Couret A. Acta Metall, 1993; 41: 2701
[10] Gong J C, Wilkinson A J. Acta Mater, 2009; 57: 5693
[11] Williams J C, Baggerly R G, Paton N E. Metall Mater Trans, 2002; 33A: 837
[12] Catoor D, Gao Y F, Geng J, Prasad M J N V, Herbert E G, Kumar K S, Pharr G M, George E P. Acta Mater, 2013; 61: 2953
[13] Byer C M, Li M, Cao B Y, Ramesh K T. Scr Mater, 2010; 62: 536
[14] Li B, Yan P F, Sui M L, Ma E. Acta Mater, 2010; 58: 173
[15] Ye J, Mishra R K, Sachdev A K, Minor A M. Scr Mater, 2011; 64: 292
[16] Yu Q, Qi L, Tsuru T, Traylor R, Rugg D, Morris Jr J W, Asta M, Chrzan D C, Minor A M. Science, 2015; 347: 636
[17] Yu Q, Qi L, Mishra R K, Li J, Minor A M. Proc Nat Academy Sci, 2013; 110: 13289
[18] Yu Q, Sun J, Morris J W, Minor A M. Scr Mater, 2013; 69: 57
[19] Poty A, Raulot J M, Xu H, Bai J, Schuman C, Lecomte J C, Philippe M J, Esling C. J Appl Phys, 2011; 110: 1
[20] Lilleodden E. Scr Mater, 2010; 62: 532
[21] Gong J C, Wilkinson A J. Acta Mater, 2011; 59: 5970
[22] Hutchinson W B, Barnett M R. Scr Mater, 2010; 63: 737
[23] Li H, Mason D E, Bieler T R, Boehlert C J, Crimp M A. Acta Mater, 2013; 61: 7555
[24] Pan J S,Tong J M,Tian M B. Fundamentals of Materials Science and Engineering. Beijing: Tsinghua University Press, 2011: 148
[24] (潘金生,仝健民,田民波. 材料科学基础. 北京: 清华大学出版社, 2011: 148)
[25] Huang X Y. The Microstructure of Materials and Electron Microscopy Analysis. Beijing: Metallurgical?Industry?Press, 2008: 58
[25] (黄孝瑛. 材料微观结构的电子显微学分析. 北京: 冶金工业出版社, 2008: 58)
[26] Wu X P, Kalidindi S R, Necker C, Salem A A. Acta Mater, 2007; 55: 423
[27] Salem A A, Kalidindi S R, Semiatin S L. Acta Mater, 2005; 53: 3495
[1] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[2] 项兆龙, 张林, XIN Yan, 安佰灵, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, 王恩刚. Cr含量对FeCrCoSi永磁合金调幅分解组织及其性能的影响[J]. 金属学报, 2022, 58(1): 103-113.
[3] 陈虹宇, 宋欣, 周相龙, 贾文涛, 袁涛, 马天宇. Sm2Co17磁体胞状组织边缘2:17R'相的透射电子显微镜表征[J]. 金属学报, 2021, 57(12): 1637-1644.
[4] 朱健, 张志豪, 谢建新. 基于原位TEM拉伸的稀土H13钢塑性形变行为和断裂机制[J]. 金属学报, 2020, 56(12): 1592-1604.
[5] 李萍, 林泉, 周玉峰, 薛克敏, 吴玉程. W高压扭转显微组织演化过程TEM分析[J]. 金属学报, 2019, 55(4): 521-528.
[6] 刘晏宇, 毛萍莉, 刘正, 王峰, 王志. Schmid因子的理论计算及其在镁合金高速变形过程中的应用[J]. 金属学报, 2018, 54(6): 950-958.
[7] 康举,梁苏莹,吴爱萍,李权,王国庆. 2219铝合金搅拌摩擦焊中的局部液化现象及对接头力学性能的影响[J]. 金属学报, 2017, 53(3): 358-368.
[8] 张子龙, 夏爽, 曹伟, 李慧, 周邦新, 白琴. 晶界特征对316不锈钢沿晶应力腐蚀开裂裂纹萌生的影响*[J]. 金属学报, 2016, 52(3): 313-319.
[9] 许志武,马志鹏,闫久春,张誉喾,张旭昀. Ti/Al异种合金接头原位拉伸应变场及断裂行为的研究*[J]. 金属学报, 2016, 52(11): 1403-1412.
[10] 康举,李吉超,冯志操,邹贵生,王国庆,吴爱萍. 2219-T8铝合金搅拌摩擦焊接头力学和应力腐蚀性能薄弱区研究*[J]. 金属学报, 2016, 52(1): 60-70.
[11] 杨富强, 宋仁伯, 孙挺, 张磊峰, 赵超, 廖宝鑫. Fe-Mn-Al轻质高强钢组织和力学性能研究*[J]. 金属学报, 2014, 50(8): 897-904.
[12] 武会宾, 武凤娟, 杨善武, 唐荻. 微米/亚微米双峰尺度奥氏体组织形成机制*[J]. 金属学报, 2014, 50(3): 269-274.
[13] 单海权, 张跃飞, 毛圣成, 张泽. 电沉积纳米孪晶Ni中五次孪晶的电子显微分析*[J]. 金属学报, 2014, 50(3): 305-312.
[14] 卢磊, 尤泽升. 纳米孪晶金属塑性变形机制*[J]. 金属学报, 2014, 50(2): 129-136.
[15] 平德海,殷匠,刘文庆,宿彦京,戎利建,赵新青. 低合金马氏体钢中的ω[J]. 金属学报, 2013, 49(7): 769-774.