Please wait a minute...
金属学报  2015, Vol. 51 Issue (2): 201-208    DOI: 10.11900/0412.1961.2014.00394
  本期目录 | 过刊浏览 |
Mn含量对Fe-Mn-Si-Cr-Ni合金记忆效应的影响机制*
张成燕1, 宋帆1, 王珊玲2, 彭华备1, 文玉华1()
1 四川大学制造科学与工程学院, 成都 610065
2 四川大学分析测试中心, 成都 610065
EFFECT MECHANISM OF Mn CONTENTS ON SHAPE MEMORY OF Fe-Mn-Si-Cr-Ni ALLOYS
ZHANG Chengyan1, SONG Fan1, WANG Shanling2, PENG Huabei1, WEN Yuhua1()
1 College of Manufacturing Science and Engineering, Sichuan University, Chengdu 610065
2 Analytical and Testing Center, Sichuan University, Chengdu 610065
引用本文:

张成燕, 宋帆, 王珊玲, 彭华备, 文玉华. Mn含量对Fe-Mn-Si-Cr-Ni合金记忆效应的影响机制*[J]. 金属学报, 2015, 51(2): 201-208.
Chengyan ZHANG, Fan SONG, Shanling WANG, Huabei PENG, Yuhua WEN. EFFECT MECHANISM OF Mn CONTENTS ON SHAPE MEMORY OF Fe-Mn-Si-Cr-Ni ALLOYS[J]. Acta Metall Sin, 2015, 51(2): 201-208.

全文: PDF(4868 KB)   HTML
摘要: 

采用OM, EBSD, XRD, TEM和SQUID研究了3种不同Mn含量的固溶态Fe-(14~21)Mn-5.5Si-8.5Cr-5Ni合金在马氏体转变开始温度Ms以上10 K (Ms+10 K)变形前后的形状记忆效应和微观组织. 结果表明, 固溶态Fe-(14~21)Mn-5.5Si-8.5Cr-5Ni合金的形状记忆效应随Mn含量增加而增加. 这是由于: 一方面, 奥氏体屈服强度与应力诱发e马氏体临界应力的差值随着Mn含量的增加而增大, 即提高Mn含量增强了奥氏体抵抗塑性变形的能力; 另一方面, Mn含量的提高减小了应力诱发e马氏体的宽度, 抑制了α' 马氏体的引入, 从而提高了应力诱发e马氏体的可逆性。

关键词 形状记忆合金Mn应力诱发e马氏体滑移    
Abstract

Fe-Mn-Si base shape memory alloys (SMAs), as compared with Ni-Ti and Cu base SMAs, have attracted much attention since the 1980s due to their promising advantages, such as low cost, good workability and weldability. However, the recovery strain of polycrystalline Fe-Mn-Si base SMAs is only about 2%~3% except single crystals and ribbons ones. At the present time, in order to enhance the recovery strain of this kind of alloys, some methods such as thermo-mechanical training, ausforming and thermo-mechanical treatment are used. In recent years, the research group had prepared training-free cast Fe-Mn-Si base alloys showing an excellent shape memory effect (SME). Unfortunately, the grains of cast Fe-Mn-Si base alloys are coarse, certainly leading to low yield strength and recovery stress. Many factors affecting the shape memory effect, such as alloy elements, the amount of pre-strain, deformation temperatures, annealing treatments and the training, have been studied. However, there is a debate on the effect of Mn contents on the shape memory effect of Fe-Mn-Si base alloys. The aim of this work is to clarify the debate, shape memory effect and microstructures of solution treated Fe-(14~21)Mn-5.5Si-8.5Cr-5Ni alloys were investigated by OM, EBSD, XRD, TEM and SQUID before and after deformation at 10 K higher than their start temperature of martensitic transformation (Ms+10 K). The result showed that the shape memory effect of solution treated Fe-(14~21)Mn-5.5Si-8.5Cr-5Ni alloys increased with the Mn contents. There are two reasons for this result. One is that the difference value between austenitic yield strength and critical stress of stress-induced e martensite increased with the Mn contents. In other word, the ability resisting plastic deformation was improved by increasing the Mn contents. The other is that the reversibility of e martensite reverse transformation was enhanced by increasing the Mn contents because the width of stress-induced e martensite decreased while the α' martensite was difficult to be introduced with increasing the Mn contents。

Key wordsshape memory alloy    Mn    stress-induced e martensite    slip
收稿日期: 2014-07-17     
ZTFLH:  TG139.6  
基金资助:*国家自然科学基金项目51171123和51271128资助
作者简介: null

张成燕, 女, 藏族, 1988年生, 硕士生

Alloy Mass fraction / % Transformation temperature / K
Mn Si Cr Ni C Fe Ms As Af
14Mn 14.81 5.63 8.72 5.48 0.006 Bal. 327 345 405
18Mn 18.81 5.61 9.31 5.36 0.010 Bal. 235 336 385
21Mn 21.63 5.60 9.32 5.38 0.015 Bal. 220 328 357
表1  Fe-Mn-Si-Cr-Ni合金的化学成分及其固溶态的相变温度
图1  固溶态14Mn, 18Mn和21Mn合金在Ms+10 K下变形量对可恢复变形量的影响
图2  固溶态14Mn, 18Mn和21Mn合金的彩色OM像
图3  固溶态14Mn, 18Mn和21Mn合金在Ms+10 K经不同量变形后的彩色OM像
图4  固溶态14Mn, 18Mn和21Mn合金在Ms+10 K经不同量变形后的XRD谱和应力诱发e马氏体体积分数
图5  固溶态14Mn, 18Mn和21Mn合金在Ms+10 K经不同量变形后的磁饱和强度
图6  固溶态21Mn合金在Ms+10 K变形9%后的TEM像及其SAED谱
图7  固溶态14Mn, 18Mn和21Mn合金在Ms+10 K经不同量变形后应力诱发e马氏体宽度的累计频率分布图
Alloy 4% 7% 9%
14Mn 0.88 0.91 1.15
18Mn 0.49 0.50 0.85
21Mn 0.38 0.40 0.63
表2  固溶态14Mn, 18Mn和21Mn合金在Ms+10 K经不同量变形后应力诱发e马氏体的平均宽度
图8  固溶态14Mn, 18Mn和21Mn合金的名义屈服强度σ0.2与变形温度的关系
[1] Sato A, Suaga Y, Tori T. Acta Metall, 1977; 25: 627
[2] Sato A, Chishima E, Soma K, Mori T. Acta Metall, 1982; 30: 1177
[3] Nishimura F, Watanabe N, Tanaka K. Mater Sci Eng, 1998; A247:275
[4] Andrade M S, Osthues R M, Arruda G J. Mater Sci Eng, 1999; A273: 512
[5] Bliznuk V V, Gavriljuk V G, Kopitsa G P, Grigoriev S V, Runov V V. Acta Mater, 2004; 52: 4791
[6] Stanford N, Dune D P. Mater Sci Eng, 2007; A454: 407
[7] Jiang B H, Qu X, Zhou W M, Xi Z L, Hsu T Y. Scr Mater Metall, 1996; 34: 1437
[8] Gavriljuk V G, BliznukV V, Shanina B D, Kolesnik S P. Mater Sci Eng, 2005; A406: 1
[9] Wang D F, Chen Y R, Gong F Y, Liu D Z, Liu W X. J Phys IV, 1995; 05: 527
[10] Stanford N, Dunne D P. Mater Sci Eng, 2006; A422: 352
[11] Baruj A, Kikuchi T, Kajiwara S, Shinya N. Mater Sci Eng, 2004; A378: 333
[12] Koyama M, Sawaguchi T, Tsuzaki K. Mater Sci Eng, 2011; A528: 2882
[13] Koyama M, Sawaguchi T, Ogawa K, Kikuchi T, Murakami M. Mater Sci Eng, 2008; A497: 353
[14] Rong L J, Li Y Y, Shi C X. Acta Metall Sin,1995; 31: 125
[14] (戎利建, 李依依, 师昌绪. 金属学报, 1995; 31: 125)
[15] Stanford N, Dunne D P. Mater Sci Eng, 2007; A454-455: 407
[16] Wen Y H, Peng H B, Wang C P, Yu Q X. Li N. Adv Eng Mater, 2011; 13: 1
[17] Otsuka H, Yamada H, Maruyama T, Tanahahi H, Matsua S, Murakam M. ISIJ Int, 1990; 30: 674
[18] Inagaki H, Inoue K. Z Metall, 1994; 85: 790
[19] Federzoni L, Guénin G. Scr Mater Metall, 1994; 31: 25
[20] Stanford N, Chen K, Dunne D P, Jin X J. ISIJ Int, 2007; 47: 883
[21] Stanford N, Dunne D P. J Mater Sci, 2006; 41: 4883
[22] Lee T H, Ha H Y, Kang J Y, Moon J, Lee C H, Park S J. Acta Mater, 2013; 61: 7399
[23] Olson G B, Cohen M. J Less-Common Met, 1972; 28: 107
[24] Caenegem N V, Duprez L, Verbeken K, Cooman B C, Houbaert Y, Segers D. ISIJ Int, 2007; 47: 723
[25] Stanford N, Dunne D P. Acta Mater, 2010; 58: 6752
[26] Tomota Y, Nakagawara W, Tsuzaki K, Maki T. Scr Mater Metall, 1992; 26: 1571
[27] Kajiwara S. Mater Sci Eng, 1999; A273-275: 67
[28] Bergeon N, Guenin G, Esnouf C. Mater Sci Eng, 1998; A242: 87
[29] Matsumoto S, Sato A, Mori T. Acta Metall Mater, 1994; 42: 1207
[30] Yang J H, Wayman C M. Metall Trans, 1992; 23A: 1445
[31] Caenegem N V, Duprez L, Verbken K, Cooman B C D, Houbaert Y, Segrs D. ISIJ Int, 2007; 47: 723
[1] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[2] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[3] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[4] 程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
[5] 陈斐, 邱鹏程, 刘洋, 孙兵兵, 赵海生, 沈强. 原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能[J]. 金属学报, 2023, 59(1): 180-190.
[6] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[7] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[8] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[9] 耿遥祥, 唐浩, 许俊华, 张志杰, 喻利花, 鞠洪博, 江乐, 简江林. 选区激光熔化高强Al-(Mn, Mg)-(Sc, Zr)合金成形性及力学性能[J]. 金属学报, 2022, 58(8): 1044-1054.
[10] 任平, 陈兴品, 王存宇, 俞峰, 曹文全. 预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响[J]. 金属学报, 2022, 58(6): 771-780.
[11] 杨秦政, 杨晓光, 黄渭清, 石多奇. 粉末高温合金FGH4096的疲劳小裂纹扩展行为[J]. 金属学报, 2022, 58(5): 683-694.
[12] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[13] 郭昊函, 杨杰, 刘芳, 卢荣生. GH4169合金拘束相关的疲劳裂纹萌生寿命[J]. 金属学报, 2022, 58(12): 1633-1644.
[14] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-NbTi原位复合材料的Lüders带型变形和载荷转移行为[J]. 金属学报, 2021, 57(7): 921-927.
[15] 叶俊杰, 贺志荣, 张坤刚, 杜雨青. 时效对Ti-50.8Ni-0.1Zr形状记忆合金显微组织、拉伸性能和记忆行为的影响[J]. 金属学报, 2021, 57(6): 717-724.