留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

辽宁省温带气旋龙卷的环境参数特征

白华 袁潮 潘晓 杨磊 李得勤

白华, 袁潮, 潘晓, 等. 辽宁省温带气旋龙卷的环境参数特征. 应用气象学报, 2023, 34(1): 104-116. DOI:  10.11898/1001-7313.20230109..
引用本文: 白华, 袁潮, 潘晓, 等. 辽宁省温带气旋龙卷的环境参数特征. 应用气象学报, 2023, 34(1): 104-116. DOI:  10.11898/1001-7313.20230109.
Bai Hua, Yuan Chao, Pan Xiao, et al. Environmental characteristics of extratropical cyclone tornadoes in Liaoning. J Appl Meteor Sci, 2023, 34(1): 104-116. DOI:  10.11898/1001-7313.20230109.
Citation: Bai Hua, Yuan Chao, Pan Xiao, et al. Environmental characteristics of extratropical cyclone tornadoes in Liaoning. J Appl Meteor Sci, 2023, 34(1): 104-116. DOI:  10.11898/1001-7313.20230109.

辽宁省温带气旋龙卷的环境参数特征

DOI: 10.11898/1001-7313.20230109
资助项目: 

中国气象局沈阳大气环境研究所开放基金 2017SYIAE12

国家重点研发计划项目 2018YFC1507301

环渤海科技协同创新项目 QYXM202101

中国气象局创新发展专项 CXFZ2022J059

东北冷涡研究重点开放实验室开放基金 2022SYIAEKFMS05

详细信息
    通信作者:

    袁潮, 邮箱: yuanchao_mare@163.com

Environmental Characteristics of Extratropical Cyclone Tornadoes in Liaoning

  • 摘要: 利用欧洲中期天气预报中心ERA5再分析数据, 统计1979—2020年辽宁省42个温带气旋龙卷环境背景和物理量参数特征, 结果表明:辽宁省温带气旋龙卷多发于温带气旋中心的西南、东南象限, 与冷锋前暖区相对应, 主要分布在辽河平原中西部及渤海湾沿岸, 强龙卷(EF2及以上级别)占比为28.6%。风暴相对螺旋度和对流有效位能的大值区出现在气旋西南—东南象限, 呈带状分布, 龙卷风暴主要分布于风暴相对螺旋度大值区西北侧、对流有效位能大值区的顶端的强梯度区附近。强龙卷参数最大值达0.7, 其大值区与EF2及以上级别龙卷相对应。地面冷锋和干线是温带气旋龙卷的关键触发系统, 对比近气旋中心和冷锋尾部湿度垂直分布, 后者所表现的高层强干侵入导致风暴产生更强的冷池, 过强的下沉气流可能是龙卷产生的不利因素。温带气旋龙卷多分布于高空急流左侧气流的分流区内, 对应高空强辐散区。0~3 km垂直温度递减率大值区与气旋中心附近的弱龙卷高发区有较好对应关系。
  • 图  1  2020年6—8月锦州站探空与ERA5对比

    Fig. 1  Sounding and ERA5 at Jinzhou Station from Jun to Aug in 2020

    图  2  1979—2020年辽宁省温带气旋龙卷分布

    (填色为海拔高度;蓝色标记为龙卷)

    Fig. 2  Distribution of extratropical cyclone tornado in Liaoning from 1979 to 2020

    (the shaded denotes altitude;the blue mark denotes tornado)

    图  3  龙卷相对温带气旋中心分布

    (黑色等值线为900 hPa位势高度,单位:dagpm;风羽为900 hPa风场;填色为900 hPa相对涡度;蓝色标记为龙卷;蓝色等值线为龙卷分布的核密度估计,最内圈为90%,最外圈为10%;气旋中心位于(0, 0))

    Fig. 3  Spatial distribution of tornado relative to the center of extratropical cyclone

    (the black isoline denotes the height at 900 hPa, unit:dagpm;the barb denotes wind at 900 hPa; the shaded denotes relative vorticity at 900 hPa; the blue mark denotes tornado;the blue isoline denotes the kernel density estimation of tornadoes, the innermost(outermost) circle is 90%(10%); the center of extratropical cyclone is located at (0, 0))

    图  4  产生龙卷的温带气旋附近的0~1 km风暴相对螺旋度(填色) 分布

    (黑色等值线为900 hPa位势高度,单位:dagpm;风羽为900 hPa风场;蓝色标记为龙卷;气旋中心位于(0, 0))

    Fig. 4  Distribution of 0-1 km storm relative helicity (the shaded) near tornadic extratropical cyclone

    (the black isoline denotes the height at 900 hPa, unit:dagpm;the barb denotes wind at 900 hPa; the blue mark denotes tornado;the center of extratropical cyclone is located at (0, 0))

    图  5  产生龙卷的温带气旋附近对流有效位能(填色) 分布

    (其他说明同图 4)

    Fig. 5  Distribution of convective available potential energy (the shaded) near tornadic extratropical cyclone

    (the others same as in Fig. 4)

    图  6  温带气旋附近的强龙卷参数(填色) 分布

    (其他说明同图 4)

    Fig. 6  Distribution of strong tonado parameter (the shaded) near tornadic extratropical cyclone

    (the others same as in Fig. 4)

    图  7  产生龙卷的温带气旋附近地面2 m温度(填色) (a)、2 m露点(填色) (b)分布

    (黑色等值线为海平面气压场,单位:hPa;风羽为地面10 m风场;蓝色标记为龙卷;气旋中心位于(0, 0))

    Fig. 7  Distribution of temperature at 2 m (the shaded) (a), dew point temperature at 2 m (the shaded) (b) near tornadic extratropical cyclone

    (the black isoline denotes the sea level pressure, unit:hPa;the barb denotes the wind at 10 m; the blue mark denotes tornado;the center of extratropical cyclone is located at (0, 0))

    图  8  沿图 7a中AA′(a)及BB′(b)的空间垂直剖面

    (红色等值线为温度,单位:℃;黑色等值线为垂直速度,单位:10 Pa·s-1;填色代表相对湿度)

    Fig. 8  Spatial vertical section along AA′(a) and BB′(b) in Fig. 7a

    (the red isoline denotes temperature, unit:℃;the black isoline denotes the vertical speed, unit:10 Pa·s-1;the shaded denotes the relative humidity)

    图  9  产生龙卷的温带气旋附近200 hPa形势场

    (黑色等值线为200 hPa位势高度,单位:dagpm;棕色等值线为200 hPa等风速线,单位:m·s-1;蓝色等值线为90%龙卷核密度分布估计;风矢为200 hPa风场;填色为200 hPa散度)

    Fig. 9  Distribution of weather situation field at 200 hPa near tornadic extratropical cyclone

    (the black isoline denotes the height at 200 hPa, unit:dagpm;the brown isoline denotes the velocity at 200 hPa, unit:m·s-1;the blue isoline denotes 90% kernel density estimation of tornadoes; the vector denotes the wind at 200 hPa; the shaded denotes the divergence at 200 hPa)

    图  10  产生龙卷的温带气旋附近地面至3 km高度温差(填色)

    (其他说明同图 4)

    Fig. 10  Distribution of temperature difference from ground to 3 km (the shaded) near tornadic extratropical cyclone

    (the others same as in Fig. 4)

    图  11  辽宁省温带气旋龙卷典型天气流型概念模型

    Fig. 11  Typical synoptic patterns of extratropical cyclone tornado in Liaoning

    表  1  1979—2020年辽宁省温带气旋龙卷

    Table  1  Extratropical cyclone tornado in Liaoning from 1979 to 2020

    序号 时间 龙卷发生地 强度等级 来源
    1 1980-06-20 兴城 EF2 《中国气象灾害大典》(辽宁卷)
    2 1980-07-21 辽阳县 EF2 《中国气象灾害大典》(辽宁卷)
    3 1983-07-04 瓦房店 EF0 地面观测
    4 1983-07-21 瓦房店 EF1 《中国气象灾害大典》(辽宁卷)
    5 1983-09-14 普兰店 EF1 《中国气象灾害大典》(辽宁卷)
    6 1983-09-14 绥中 EF2 《中国气象灾害大典》(辽宁卷)
    7 1984-05-27 义县 EF2 县级历史气象灾情收集资料
    8 1984-06-09 喀左 EF0 县级历史气象灾情收集资料
    9 1985-06-10 建昌 EF0 县级历史气象灾情收集资料
    10 1986-07-14 苏家屯 EF2 《辽宁省志》(气象志)
    11 1986-07-14 黑山 EF2 《辽宁省志》(气象志)
    12 1986-07-14 葫芦岛 EF1 县级历史气象灾情收集资料
    13 1986-07-22 阜新县 EF0 县级历史气象灾情收集资料
    14 1986-08-08 康平 EF2 县级历史气象灾情收集资料
    15 1986-08-12 阜新县 EF1 县级历史气象灾情收集资料
    16 1987-06-19 朝阳县 EF1 县级历史气象灾情收集资料
    17 1987-07-13 营口 EF0 地面观测
    18 1988-09-06 北票 EF1 《辽宁省志》(气象志)
    19 1988-09-06 阜新县 EF2 《辽宁省志》(气象志)
    20 1989-06-24 阜新县 EF1 县级历史气象灾情收集资料
    21 1989-05-18 阜新县 EF1 县级历史气象灾情收集资料
    22 1990-06-22 大洼 EF1 县级历史气象灾情收集资料
    23 1990-08-12 辽阳县 EF3 《辽宁省志》(气象志)
    24 1991-07-15 阜新县 EF0 县级历史气象灾情收集资料
    25 1992-08-10 黑山 EF2 《辽宁省志》(气象志)
    26 1993-06-06 葫芦岛 EF1 县级历史气象灾情收集资料
    27 1993-06-07 新民 EF0 县级历史气象灾情收集资料
    28 1993-08-12 彰武 EF1 县级历史气象灾情收集资料
    29 1996-09-19 庄河 EF1 县级历史气象灾情收集资料
    30 1998-05-26 康平 EF1 县级历史气象灾情收集资料
    31 2000-07-13 葫芦岛 EF1 县级历史气象灾情收集资料
    32 2000-08-23 黑山 EF1 县级历史气象灾情收集资料
    33 2002-07-31 辽中 EF1 地面观测
    34 2005-06-01 绥中 EF1 县级历史气象灾情收集资料
    35 2005-06-10 朝阳县 EF3 《中国气象灾害年鉴》
    36 2005-06-11 沈阳 EF0 县级历史气象灾情收集资料
    37 2005-07-01 盘山 EF0 县级历史气象灾情收集资料
    38 2005-08-10 盖州 EF1 县级历史气象灾情收集资料
    39 2010-07-27 彰武 EF1 县级历史气象灾情收集资料
    40 2012-06-04 铁岭县 EF2 县级历史气象灾情收集资料
    41 2012-07-02 大连 EF0 县级历史气象灾情收集资料
    42 2013-09-06 大连 EF0 县级历史气象灾情收集资料
    下载: 导出CSV
  • [1] 范雯杰, 俞小鼎.中国龙卷的时空分布特征.气象, 2015, 41(7):793-805. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201507001.htm

    Fan W J, Yu X D. Characteristics of spatial-temporal distribution of tornadoes in China. Meteor Mon, 2015, 41(7): 793-805. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201507001.htm
    [2] 郑永光. 中国龙卷气候特征和环境条件研究进展综述. 气象科技进展, 2020, 10(6): 69-75. doi:  10.3969/j.issn.2095-1973.2020.06.012

    Zheng Y G. Review of climatology and favorable environmental conditions of tornado in China. Adv Meteor Sci Tech, 2020, 10(6): 69-75. doi:  10.3969/j.issn.2095-1973.2020.06.012
    [3] 魏文秀, 赵亚民. 中国龙卷风的若干特征. 气象, 1995, 21(5): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX505.007.htm

    Wei W X, Zhao Y M. Characteristic of tornadoes in China. Meteor Mon, 1995, 21(5): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX505.007.htm
    [4] Yao Y Q, Yu X D, Zhang Y J, et al. Climate analysis of tornadoes in China. J Meteor Res, 2015, 29(3): 359-369. doi:  10.1007/s13351-015-4983-0
    [5] 才奎志, 姚秀萍, 孙晓巍, 等. 冷涡背景下辽宁龙卷气候特征和环境条件. 气象学报, 2022, 80(1): 82-92. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202201006.htm

    Cai K Z, Yao X P, Sun X W, et al. Climatic characteristics and environmental conditions of tornadoes in Liaoning under the background of cold vortex. Acta Meteor Sinica, 2022, 80(1): 82-92. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202201006.htm
    [6] 袁潮, 王式功, 马湘宜, 等. 2019年7月3日开原龙卷形成环境背景及机理探究. 高原气象, 2021, 40(2): 384-393. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202102015.htm

    Yuan C, Wang S G, Ma X Y, et al. Environmental background and formative mechanisms of a tornado occurred in Kaiyuan on 3 July 2019. Plateau Meteor, 2021, 40(2): 384-393. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202102015.htm
    [7] Davies-Jones R, Trapp R J, Bluestein H B. Tornadoes and Tornadic Storms//Doswell Ⅲ C A. Severe Convective Storms. Boston, MA: American Meteorological Society, 2001: 167-221.
    [8] Marquis J N, Richardson Y P, Markowski P M, et al. Tornado maintenance investigated with high-resolution dual-Doppler and EnKF analysis. Mon Wea Rev, 2012, 140(1): 3-27. doi:  10.1175/MWR-D-11-00025.1
    [9] Trapp R J, Weisman M L. Low-level mesovortices within squall lines and bow echoes. Part Ⅱ: Their genesis and implications. Mon Wea Rev, 2003, 131(2): 804-823.
    [10] Atkins N T, Laurent S T. Bow echo mesovortices. Part Ⅱ: Their genesis. Mon Wea Rev, 2009, 137(5): 1514-1532. doi:  10.1175/2008MWR2650.1
    [11] Wakimoto R M, Wilson J W. Non-supercell tornadoes. Mon Wea Rev, 1989, 117(6): 1113-1140. doi:  10.1175/1520-0493(1989)117<1113:NST>2.0.CO;2
    [12] 俞小鼎, 赵娟, 范雯杰. 中国龙卷的时空分布与关键环境参数特征. 热带气象学报, 2021, 37(增刊Ⅰ): 681-692. doi:  10.16032/j.issn.1004-4965.2021.064

    Yu X D, Zhao J, Fan W J. Tornadoes in China: Spatiotemporal distribution and environmental characteristics. J Trop Meteor, 2021, 37(SupplⅠ): 681-692. doi:  10.16032/j.issn.1004-4965.2021.064
    [13] Johns R H, Davies J M, Leftwich P W. An Examination of the Relationship of 0-2 km AGL "Positive" Wind Shear to Potential Buoyant Energy in Strong and Violent Tornado Situation//16th Conference on Severe Local Storms. Alber, American Meteorological Society, 1990: 593-598.
    [14] Rasmussen E N, Blanchard D O. A baseline climatology of sounding derived supercell and tornado forecast parameters. Wea Forecasting, 1998, 13(4): 1148-1164. doi:  10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2
    [15] Brooks H E, Lee J W, Craven J P. The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmos Res, 2003, 67/68: 73-94. doi:  10.1016/S0169-8095(03)00045-0
    [16] Craven J P, Brooks H E, Hart J A, et al. Baseline climatology of sounding derived parameters associated with deep moist convection. Natl Wea Dig, 2004, 28: 13-24.
    [17] Johns R H, Doswell C A. Severe local storms forecasting. Wea Forecasting, 1992, 7(4): 588-612. doi:  10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2
    [18] Stensrud D J, Cortinas J V, Brooks H E. Discriminating between tornadic and nontornadic thunderstorms using mesoscale model output. Wea Forecasting, 1997, 12(3): 613-632. doi:  10.1175/1520-0434(1997)012<0613:DBTANT>2.0.CO;2
    [19] Gaffin D M, Parker S S. A climatology of synoptic conditions associated with significant tornadoes across the southern Appalachian region. Wea Forecasting, 2006, 21(5): 735-751. doi:  10.1175/WAF951.1
    [20] Tochimoto E, Niino H. Structural and environmental characteristics of extratropical cyclones that cause tornado outbreaks in the warm sector: A composite study. Mon Wea Rev, 2016, 144(3): 945-969. doi:  10.1175/MWR-D-15-0015.1
    [21] Rasmussen E N, Richardson S, Straka J M, et al. The association of significant tornadoes with a baroclinic boundary on 2 June 1995. Mon Wea Rev, 2000, 128(1): 174-191. doi:  10.1175/1520-0493(2000)128<0174:TAOSTW>2.0.CO;2
    [22] Mercer A E, Shafer C M, Doswell C A, et al. Objective classification of tornadic and nontornadic severe weather outbreaks. Mon Wea Rev, 2009, 137(12): 4355-4368. doi:  10.1175/2009MWR2897.1
    [23] Mercer A E, Shafer C M, Doswell C A, et al. Synoptic composites of tornadic and nontornadic outbreaks. Mon Wea Rev, 2012, 140(8): 2590-2608. doi:  10.1175/MWR-D-12-00029.1
    [24] Shafer C M, Mercer A E, Doswell C A, et al. Evaluation of WRF forecasts of tornadic and nontornadic outbreaks when initialized with synoptic-scale input. Mon Wea Rev, 2009, 137(4): 1250-1271. doi:  10.1175/2008MWR2597.1
    [25] Shafer C M, Mercer A E, Leslie L M, et al. Evaluation of WRF model simulations of tornadic and nontornadic outbreaks that occur in the spring and fall. Mon Wea Rev, 2010, 138(11): 4098-4119. doi:  10.1175/2010MWR3269.1
    [26] Schultz D M, Winters A C, Colle B A, et al. Extratropical cyclones: A century of research on meteorology's centerpiece. Meteor Monogr, 2019, 59: 16.1-16.56. doi:  10.1175/AMSMONOGRAPHS-D-18-0015.1
    [27] 高松影, 赵婷婷, 宋丽丽, 等. 影响东北的两个罕见气旋发展机制对比. 应用气象学报, 2020, 31(5): 556-569. doi:  10.11898/1001-7313.20200504

    Gao S Y, Zhao T T, Song L L, et al. Comparison of development mechanisms of two cyclones affecting Northeast China. J Appl Meteor Sci, 2020, 31(5): 556-569. doi:  10.11898/1001-7313.20200504
    [28] Hamill T M, Schneider R S, Brooks H E, et al. The May 2003 extended tornado outbreak. Bull Amer Meteor Soc, 2005, 86(4): 531-542. doi:  10.1175/BAMS-86-4-531
    [29] Niino H, Fujitani T, Watanabe N. A statistical study of tornadoes and waterspouts in Japan from 1961 to 1993. J Climate, 2010, 10(7): 1730-1752.
    [30] 何立富, 齐道日娜, 余文. 引发东北极端暴雪的黄渤海气旋爆发性发展机制. 应用气象学报, 2022, 33(4): 385-399. doi:  10.11898/1001-7313.20220401

    He L F, Chyi D, Yu W. Development mechanisms of the Yellow Sea and Bohai Sea cyclone causing extreme snowstorm in Northeast China. J Appl Meteor Sci, 2022, 33(4): 385-399. doi:  10.11898/1001-7313.20220401
    [31] 张家国, 王珏, 吴涛, 等. 长江中游地区极端降水主要天气系统类型分析. 暴雨灾害, 2018, 37(1): 14-23. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201801003.htm

    Zhang J G, Wang J, Wu T, et al. Weather system types of extreme precipitation in the middle reaches of the Yangtze River. Torrential Rain Disaster, 2018, 37(1): 14-23. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201801003.htm
    [32] 刘硕, 李得勤, 赛瀚, 等. 台风"狮子山"并入温带气旋过程及引发东北强降水的分析. 高原气象, 2019, 38(4): 804-816. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201904013.htm

    Liu S, Li D Q, Sai H, et al. The physical mechanism and strong precipitation in Northeast China analysis during Typhoon "Lionrock" merging into extratropical cyclone process. Plateau Meteor, 2019, 38(4): 804-816. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201904013.htm
    [33] 张琳, 吕俊梅, 丁明虎. 2015年初北极极端气旋对中国寒潮的影响. 应用气象学报, 2020, 31(3): 315-327. doi:  10.11898/1001-7313.20200306

    Zhang L, Lü J M, Ding M H. Impact of Arctic extreme cyclones on cold spells in China during early 2015. J Appl Meteor Sci, 2020, 31(3): 315-327. doi:  10.11898/1001-7313.20200306
    [34] 许健民. 温带气旋和梅雨锋的卫星云图特征. 气象科技进展, 2021, 11(3): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ202103008.htm

    Xu J M. Satellite imagery characteristics for extratropical cyclones and meiyu fronts. Adv Meteor Sci Tech, 2021, 11(3): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ202103008.htm
    [35] 王秀明, 俞小鼎, 周小刚. 中国东北龙卷研究: 环境特征分析. 气象学报, 2015, 73(3): 425-441. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201503002.htm

    Wang X M, Yu X D, Zhou X G. Study of Northeast China torandoes: The environmental characteristics. Acta Meteor Sinica, 2015, 73(3): 425-441. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201503002.htm
    [36] 杨伟, 方阳, 蒋帅, 等. 2017年8月13日东洞庭湖水龙卷特征. 应用气象学报, 2020, 31(3): 328-338. doi:  10.11898/1001-7313.20200307

    Yang W, Fang Y, Jiang S, et al. Characteristics of the waterspout in East Dongting Lake on 13 August 2017. J Appl Meteor Sci, 2020, 31(3): 328-338. doi:  10.11898/1001-7313.20200307
    [37] 黄先香, 俞小鼎, 炎利军, 等. 1804号台风"艾云尼"龙卷分析. 气象学报, 2019, 77(4): 645-661. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201904003.htm

    Huang X X, Yu X D, Yan L J, et al. An analysis on tornadoes in Typhoon Ewiniar. Acta Meteor Sinica, 2019, 77(4): 645-661. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201904003.htm
    [38] 黄先香, 俞小鼎, 炎利军, 等. 广东两次台风龙卷的环境背景和雷达回波对比. 应用气象学报, 2018, 29(1): 70-83. doi:  10.11898/1001-7313.20180107

    Huang X X, Yu X D, Yan L J, et al. Contrastive analysis of two intense typhoon-tornado cases with synoptic and Doppler weather radar data in Guangdong. J Appl Meteor Sci, 2018, 29(1): 70-83. doi:  10.11898/1001-7313.20180107
    [39] Bai L Q, Meng Z Y, Huang L, et al. An integrated damage, visual, and radar analysis of the 2015 Foshan, Guangdong, EF3 Tornado in China produced by the landfalling Typhoon Mujigae(2015). Bull Amer Meteor Soc, 2017, 98(12): 2619-2640.
    [40] 傅佩玲, 胡东明, 黄浩, 等. 台风山竹(1822)龙卷的双极化相控阵雷达特征. 应用气象学报, 2020, 31(6): 706-718. doi:  10.11898/1001-7313.20200606

    Fu P L, Hu D M, Huang H, et al. Observation of a tornado event in outside-region of Typhoon Mangkhut by X-band polarimetric phased array radar in 2018. J Appl Meteor Sci, 2020, 31(6): 706-718. doi:  10.11898/1001-7313.20200606
    [41] 王婷婷, 王宁, 姚瑶, 等. 东北冷涡背景下两类龙卷形成机制的对比分析. 气象与环境学报, 2017, 33(6): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201706002.htm

    Wang T T, Wang N, Yao Y, et al. Comparison analysis of formation mechanisms of two tornado cases under the background of northeast cold vortex. J Meteor Environ, 2017, 33(6): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201706002.htm
    [42] 王宁, 王婷婷, 张硕, 等. 东北冷涡背景下一次龙卷过程的观测分析. 应用气象学报, 2014, 25(4): 463-469. http://qikan.camscma.cn/article/id/20140409

    Wang N, Wang T T, Zhang S, et al. Observation of a tornado in the circulation background of northeast cold vortex. J Appl Meteor Sci, 2014, 25(4): 463-469. http://qikan.camscma.cn/article/id/20140409
    [43] 蔡康龙, 黄先香, 戴春容, 等. 2020年8月9日黑龙江绥化龙卷灾情调查与天气雷达识别. 热带气象学报, 2021, 37(增刊Ⅰ): 792-800. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX2021Z1009.htm

    Cai K L, Huang X X, Dai C R, et al. Damage survey and weather radar identification of the tornado on August 9, 2020 in Suihua, Heilongjiang Province. J Trop Meteor, 2021, 37(SupplⅠ): 792-800. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX2021Z1009.htm
    [44] 徐玥, 邵美荣, 唐凯, 等. 2021年黑龙江两次超级单体龙卷过程多尺度特征. 应用气象学报, 2022, 33(3): 305-318. doi:  10.11898/1001-7313.20220305

    Xu Y, Shao M R, Tang K, et al. Multiscale characteristics of two supercell tornados of Heilongjiang in 2021. J Appl Meteor Sci, 2022, 33(3): 305-318. doi:  10.11898/1001-7313.20220305
    [45] 孟宪贵, 郭俊建, 韩永清. ERA5再分析数据适用性初步评估. 海洋气象学报, 2018, 38(1): 91-99. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX201801011.htm

    Meng X G, Guo J J, Han Y Q. Preliminarily assessment of ERA5 reanalysis data. J Marine Meteor, 2018, 38(1): 91-99. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX201801011.htm
    [46] 王秀明, 俞小鼎, 朱禾. NCEP再分析资料在强对流环境分析中的应用. 应用气象学报, 2012, 23(2): 139-146. http://qikan.camscma.cn/article/id/20120202

    Wang X M, Yu X D, Zhu H. The applicability of NCEP reanalysis data to severe convection environment analysis. J Appl Meteor Sci, 2012, 23(2): 139-146. http://qikan.camscma.cn/article/id/20120202
    [47] Hodges K I, Lee R W, Bengtsson L. A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25. J Climate, 2011, 24(18): 4888-4906.
    [48] Woodall G R. Qualitative Analysis and Forecasting of Tornado Activity Using Storm-relative Environmental Helicity//16th Conf on Severe Local Storm. American Meteorological Society, 1990: 311-315.
    [49] Grams J S, Thompson R L, Snively D V, et al. A climatology and comparison of parameters for significant tornado events in the United States. Wea Forecasting, 2012, 27(1): 106-123.
    [50] Wind Science and Engineering Center. A Recommendation for an Enhance Fujita Scale(EF-scale). Wind Science and Engineering Center Rep, Texas Tech University, Lubbock, TX, 2004.
    [51] Schultz D M, Richardson Y P, Markowski P M, et al. Tornadoes in the Central United States and the "Clash of Air Masses". Bull Amer Meteor Soc, 2014, 95(11): 1704-1712.
    [52] Doswell C A. The distinction between large-scale and mesoscale contribution to severe convection: A case study example. Wea Forecasting, 1987, 2(1): 3-16.
    [53] Davies J M. Tornadoes in environments with small helicity and/or high LCL heights. Wea Forecasting, 2006, 21(4): 579-594.
  • 加载中
图(11) / 表(1)
计量
  • 摘要浏览量:  958
  • HTML全文浏览量:  107
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-27
  • 修回日期:  2022-10-24
  • 刊出日期:  2023-01-31

目录

    /

    返回文章
    返回