Please wait a minute...
材料导报  2020, Vol. 34 Issue (16): 16100-16103    https://doi.org/10.11896/cldb.19080017
  金属与金属基复合材料 |
Zr基大块金属玻璃与304L不锈钢脉冲激光焊接接头微观组织特性
陈会子1, 黄健康1,2, 刘世恩2, 于晓全2, 樊丁2
1 兰州理工大学材料科学与工程学院,兰州 730050;
2 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
Microstructure Characteristics in the Pulsed Laser Welding Joint of Zr-based BMG and 304L Stainless Steel
CHEN Huizi1, HUANG Jiankang1,2, LIU Shi’en2, YU Xiaoquan2, FAN Ding2
1 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China;
2 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals,Lanzhou University of Technology,Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 4091KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用脉冲激光的方法实现了 Zr44Ti11Ni10Cu10Be25(原子分数,%)大块金属玻璃与304L不锈钢板的焊接。用场发射扫描电子显微镜、能谱仪、X射线衍射仪对焊接接头不同区域的显微结构和化学成分进行了表征。由于冷却速度不同,形成了三个不同的结晶区。接头由部分结晶区(热影响区、焊缝区和304L不锈钢/焊缝区界面)和非晶区(Zr基BMG母材)组成。热影响区出现花瓣状和小颗粒的结晶,X射线衍射图谱中衍射峰强度很小,焊缝区出现一些十字雪花状的结晶,衍射峰对应Zr2Cu和Zr2Fe相,而在304L不锈钢/焊缝区界面处XRD图谱中出现大量尖锐的晶体峰。通过计算得到热影响区、焊缝区和304L不锈钢/焊缝区界面三个不同的结晶区的结晶分数分别为1.4%、10.0%、27.4%。焊缝区形成的晶态组织维氏硬度最大。大块金属玻璃与焊缝区之间形成扩散层,表明焊接过程中Zr通过扩散层向焊缝区迁移。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈会子
黄健康
刘世恩
于晓全
樊丁
关键词:  大块金属玻璃  焊接接头  微观组织  结晶分数    
Abstract: Using pulsed laser welding method, the connection between Zr44Ti11Ni10Cu10Be25 (at%) bulk metallic glass and 304L stainless steel plate was realized. The microstructures and chemical compositions of different regions of weld joint were characterized by field emission scanning electron microscope, energy dispersive spectrometer and X-ray diffraction. Three different crystallization zones were formed due to different coo-ling rates. The weld joint consists of partial crystallization zone (heat affected zone, weld zone and 304L stainless steel/weld zone interface) and amorphous zone (Zr-based bulk metallic glass base metal). Petal-like and small-particle crystallization occurs in heat affected zone. The intensity of diffraction peaks in X-ray diffraction pattern is very small. Some cross-snowflake crystallization appear in weld zone. The diffraction peaks correspond to Zr2Cu and Zr2Fe phases. A large number of sharp crystal peaks appear in XRD pattern at 304L stainless steel/weld zone interface. The results show that the crystallization fractions of heat affected zone, weld zone and 304L stainless steel/weld zone interface are 1.4%, 10.0% and 27.4%, respectively. The Vickers hardness of the crystalline microstructure formed in the weld zone is the highest. The diffusion layer formed between BMG and weld zone indicates that Zr migrates to weld zone through diffusion layer during welding.
Key words:  bulk metallic glasses    weld joint    microstructure    crystallization fraction
               出版日期:  2020-08-25      发布日期:  2020-07-24
ZTFLH:  TG442  
基金资助: 国家自然科学基金 (51865029)
通讯作者:  sr2810@163.com   
作者简介:  陈会子,1994年出生,山东潍坊人,2020年毕业于兰州理工大学获硕士学位,导师黄健康,主要从事非晶合金焊接界面机理及异种金属连接方面的研究。
黄健康,副教授,兰州理工大学硕士研究生导师,2005年毕业于湘潭大学,2007 年于兰州理工大学获得硕士学位,2010年于兰州理工大学获得博士学位。主要从事异种金属连接、焊接物理与焊接过程检测和控制等方面的研究。目前已发表论文100多篇。
引用本文:    
陈会子, 黄健康, 刘世恩, 于晓全, 樊丁. Zr基大块金属玻璃与304L不锈钢脉冲激光焊接接头微观组织特性[J]. 材料导报, 2020, 34(16): 16100-16103.
CHEN Huizi, HUANG Jiankang, LIU Shi’en, YU Xiaoquan, FAN Ding. Microstructure Characteristics in the Pulsed Laser Welding Joint of Zr-based BMG and 304L Stainless Steel. Materials Reports, 2020, 34(16): 16100-16103.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080017  或          http://www.mater-rep.com/CN/Y2020/V34/I16/16100
1 Wang W H, Dong C, Shek C H. Materials Science and Engineering: R: Reports, 2004, 44(2-3),45.
2 Shi B, Wang J H, Wei F A. Materials Review A: Review Papers, 2019, 33(4),1221(in Chinese).
时博, 王金辉, 魏福安.材料导报:综述篇, 2019, 33(4),1221.
3 Vivek A, Presley M, Flores K M, et al. Materials Science and Enginee-ring: A, 2015, 634,14.
4 Wang D, Li N, Liu L. Intermetallics, 2018,93,180.
5 Wang D, Xiao B, Ma Z, et al. Scripta Materialia, 2009, 60 (2),112.
6 Williams E, Lavery N. Journal of Materials Processing Technology, 2017, 247,73.
7 Chen B, Shi T L, Li M, et al. Intermetallics, 2014, 46,111.
8 Kawahito Y, Terajima T, Kimura H, et al. Materials Science and Engineering B, 2008, 148(1), 105.
9 Li B, Li Z Y, Xiong J G, et al. Journal of Alloys and Compounds, 2006, 413(1-2),118.
10 Wang G, Huang Y J, Shagiev M, et al. Materials Science & Engineering A, 2012, 541(9), 33.
11 Shen Y, Li Y, Tsai H L. Journal of Non-Crystalline Solids, 2017, 481, 299.
12 Schroers J, Nguyen T, O’Keeffe S, et al. Journal of Microelectromecha-nical Systems, 2007, 16(2), 240.
13 Chen R, Yang F, Fan G, et al. Journal of Materials Science, 2007, 42(6), 2208.
14 Kagao S, Kawamura Y, Ohno Y. Materials Science & Engineering A (Structural Materials: Properties, Microstructure and Processing), 2004, 375-377, 312.
15 Sutton M. Materials Science and Engineering A, 1994, 178(1), 265.
[1] 秦笑, 王娟, 林高用, 郑开宏, 王海艳, 冯晓伟. 镀铜石墨/铜复合材料的组织和摩擦磨损性能[J]. 材料导报, 2020, 34(Z1): 380-384.
[2] 刘钊扬, 熊柏青, 张永安, 李志辉, 李锡武, 闫丽珍, 温凯. 汽车车身板用6A16铝合金拉深成形金属流动和微观组织相关性研究[J]. 材料导报, 2020, 34(8): 8119-8125.
[3] 张松, 杨静, 胥永刚, 张明月. 仿SIMA法钎焊对Mn-Cu合金与430不锈钢接头组织及性能的影响[J]. 材料导报, 2020, 34(8): 8126-8130.
[4] 信思树, 王镇华, 李春玲, 王清. 体心立方BCC基多元合金中的共格析出及强化[J]. 材料导报, 2020, 34(7): 7130-7137.
[5] 蔺宏涛, 孟强, 王怡嵩, 王家毅, 张韵, 江海涛. 旋转速度对高强度钢Q&P980搅拌摩擦焊接头组织与性能的影响[J]. 材料导报, 2020, 34(6): 6126-6131.
[6] 陈健, 周莉, 刘金洋, 吉红伟, 杨勇, 刘伟, 邓欣, 伍尚华. 真空和渗氮烧结WC-TiC-Co硬质合金的梯度结构形成机理研究[J]. 材料导报, 2020, 34(4): 4077-4082.
[7] 王向杰, 冯蕾, 武靖亭, 肖新华, 苏蓓蓓. 搅拌摩擦焊接ZK60镁合金弯曲性能与断裂行为研究[J]. 材料导报, 2020, 34(4): 4083-4086.
[8] 李福贵, 雷玉成, 李天庆, 朱强, 张雪宁. 奥氏体不锈钢焊接接头辐照偏析和辐照硬化的研究[J]. 材料导报, 2020, 34(4): 4098-4102.
[9] 刘轩之,顾开选 ,翁泽钜,王凯凯,崔晨,郭嘉,王俊杰. 铝合金深冷处理研究进展[J]. 材料导报, 2020, 34(3): 3172-3177.
[10] 王文权, 李雅倩, 李欣, 刘亮, 陈飞. 选区激光熔化制备Ni-Cr-B-Si合金粉末的微观组织与性能[J]. 材料导报, 2020, 34(2): 2077-2082.
[11] 宗学文, 刘文杰, 张健, 杨雨蒙, 高中堂. 激光选区熔化与铸造成形TC4钛合金的力学性能分析[J]. 材料导报, 2020, 34(16): 16083-16086.
[12] 黄惠毅, 刘裔源, 唐鹏, 胡治流, 王康, 韩振尧. Co元素对Al-10Si-1.5Fe合金显微组织和力学性能的影响[J]. 材料导报, 2020, 34(16): 16087-16093.
[13] 张忠科, 赵早龙, 李德福, 郑江辉. 6082铝合金摩擦塞补焊接头微观组织与性能[J]. 材料导报, 2020, 34(16): 16094-16099.
[14] 陈宇强, 张文涛, 张浩, 潘素平, 李运湘, 李宁波, 欧陈贵, 伏明珠, 阳铭广. T6I6处理对Al-Si-Mg-Cu铸铝时效析出及疲劳行为的影响[J]. 材料导报, 2020, 34(14): 14122-14128.
[15] 邹田春, 欧尧, 祝贺, 秦嘉徐. 激光选区熔化AlSi7Mg合金的微观组织和力学性能[J]. 材料导报, 2020, 34(10): 10098-10102.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed