留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

kA级双阶梯脉冲电源方案设计与分析

陈俊宏 肖东华 熊玉珍 王英翘 陈小昌 宣伟民 戢洋

陈俊宏, 肖东华, 熊玉珍, 等. kA级双阶梯脉冲电源方案设计与分析[J]. 强激光与粒子束, 2024, 36: 025012. doi: 10.11884/HPLPB202436.230243
引用本文: 陈俊宏, 肖东华, 熊玉珍, 等. kA级双阶梯脉冲电源方案设计与分析[J]. 强激光与粒子束, 2024, 36: 025012. doi: 10.11884/HPLPB202436.230243
Chen Junhong, Xiao Donghua, Xiong Yuzhen, et al. Design and analysis of kA stepped pulse current generation scheme[J]. High Power Laser and Particle Beams, 2024, 36: 025012. doi: 10.11884/HPLPB202436.230243
Citation: Chen Junhong, Xiao Donghua, Xiong Yuzhen, et al. Design and analysis of kA stepped pulse current generation scheme[J]. High Power Laser and Particle Beams, 2024, 36: 025012. doi: 10.11884/HPLPB202436.230243

kA级双阶梯脉冲电源方案设计与分析

doi: 10.11884/HPLPB202436.230243
基金项目: 四川省科技计划项目(2021JDTD0022、MZGC20230009)
详细信息
    作者简介:

    陈俊宏,chenjh@swip.ac.cn

  • 中图分类号: TM461.4

Design and analysis of kA stepped pulse current generation scheme

  • 摘要: 托卡马克装置预电离过程中,环向磁场应与电子回旋波频率相匹配,NCST装置现有的电子回旋波频率较低,为了让环向场与已有的电子回旋波频率匹配,提出新的环向场线圈电流产生方案,在原方案的磁场线圈平顶电流产生之前增加一个低电流台阶。回顾NCST球形托卡马克装置环向场线圈电源的原有方案后,设计了全控型和半控型两种方案,从电压电流的高次谐波、电流的可控性和纹波、改动成本和安装便捷性四方面对比两个方案的优缺点,最终选定半控型改造方案。根据现场条件制作电源改造柜,尽量减少对原有电源柜的改动。实际测试结果显示,两个电流台阶衔接正常,低电流台阶宽度可调、幅值可调,满足改造要求。
  • 图  1  环向场线圈电源电流波形示意图

    Figure  1.  Current diagram of Toroidal coil power supply

    图  2  原方案[6, 12]

    Figure  2.  Conventional scheme[6, 12]

    图  3  改造方案

    Figure  3.  Modified schemes

    图  4  半控型方案的环向场线圈波形

    Figure  4.  Waveforms of toroidal coil in half controlled scheme

    图  5  电容量和初始电压对电流上升时间和电流峰值的影响

    Figure  5.  tm and Imax influenced by capacitance and initial voltage

    图  6  全控型方案的环向场线圈波形

    Figure  6.  Waveforms of toroidal coil in fully controlled scheme

    图  7  负载电压和电流细节

    Figure  7.  Detail of voltage and current ripples

    图  8  负载电压谐波成分分析

    Figure  8.  FFT analysis of load voltage

    图  9  负载电流波动率

    Figure  9.  Ratio of current fluctuation in different schemes

    图  10  改造前电流波形

    Figure  10.  Actual current waveform before modification

    图  11  改造后电流波形

    Figure  11.  Actual current waveforms after modification

  • [1] 中国国际核聚变能源计划执行中心, 核工业西南物理研究院. 国际核聚变能源研究现状与前景[M]. 北京: 中国原子能出版社, 2015: 1-10

    China International Nuclear Fusion Energy Program Excution Center, Southwestern Institute of Physics. Current situation and prospect of international nuclear fusion energy research[M]. Beijing: China Atomic Energy Press, 2015: 1-10
    [2] 熊健, 刘海, 宣伟民, 等. CFQS装置准环对称测试用磁体电源系统设计[J]. 强激光与粒子束, 2023, 35:025001 doi: 10.11884/HPLPB202335.220164

    Xiong Jian, Liu Hai, Xuan Weimin, et al. Design of magnet power supply system for quasi-axisymmetric test of Chinese first quasi-axisymmetric stellarator[J]. High Power Laser and Particle Beams, 2023, 35: 025001 doi: 10.11884/HPLPB202335.220164
    [3] Chen Bin, Zhu Yubao, Zhou Qing, et al. Microwave preionization and electron cyclotron resonance plasma current startup in the EXL-50 spherical tokamak[J]. Plasma Science and Technology, 2022, 24: 015104. doi: 10.1088/2058-6272/ac3640
    [4] Xie Jiaxing, Wei Xuechao, Liu Haiqing, et al. Development of a combined interferometer using millimeter wave solid state source and a far infrared laser on ENN's XuanLong-50 (EXL-50)[J]. Plasma Science and Technology, 2022, 24: 064004. doi: 10.1088/2058-6272/ac5e72
    [5] Wang Ying, Zeng Li, He Yexi, et al. Initial plasma startup test on SUNIST spherical tokamak[J]. Plasma Science and Technology, 2003, 5(6): 2017-2022. doi: 10.1088/1009-0630/5/6/001
    [6] Hou Ming, Qian Yuzhong, Liu S Q, et al. Design of power supply system for the NanChang Spherical Tokamak[J]. AIP Advances, 2022, 12: 025106. doi: 10.1063/5.0079504
    [7] Chen F F. 等离子体物理学导论[M]. 林光海, 译. 北京: 科学出版社, 2016

    Chen F F. Introduction to plasma physics[M]. Lin Guanghai, trans. Beijing: Science Press, 2016
    [8] 袁保山, 姜韶风, 陆志鸿. 托卡马克装置工程基础[M]. 北京: 原子能出版社, 2011: 470

    Yuan Baoshan, Jiang Shaofeng, Lu Zhihong. Fundamentals of Tokamak installation engineering[M]. Beijing: Atomic Energy Press, 2011: 470
    [9] Wesson J, Tokamaks. The international series of monographs on physics[M]. New York: Oxford University Press, 2011.
    [10] 邓珀昆, 林楷宣, 罗秋燕. 等. 基于晶闸管的大电流脉冲发生器研制[J]. 强激光与粒子束, 2021, 33:115003 doi: 10.11884/HPLPB202133.210228

    Deng Pokun, Lin Kaixuan, Luo Qiuyan, et al. Development of large current pulse generator based on thyristor[J]. High Power Laser and Particle Beams, 2021, 33: 115003 doi: 10.11884/HPLPB202133.210228
    [11] 陈志强, 谢霖燊, 贾伟, 等. 电磁脉冲模拟装置用3MV中储电容器的研制[J]. 强激光与粒子束, 2021, 33:095001 doi: 10.11884/HPLPB202133.210195

    Chen Zhiqiang, Xie Linshen, Jia Wei, et al. Development of a 3 MV transfer capacitor used in an electromagnetic pulse simulator[J]. High Power Laser and Particle Beams, 2021, 33: 095001 doi: 10.11884/HPLPB202133.210195
    [12] He Yexi, Li Xiaoyan, Gao Zhe. Coupling effect between equilibrium field and heating field and modification of the power supply system on SUNIST spherical tokamak[J]. Plasma Science and Technology, 2005, 7(1): 2623-2625. doi: 10.1088/1009-0630/7/1/004
    [13] 李松杰, 赵娟, 康传会, 等. 240 kJ模块化能库型脉冲放电电源研制[J]. 强激光与粒子束, 2022, 34:095015 doi: 10.11884/HPLPB202234.210564

    Li Songjie, Zhao Juan, Kang Chuanhui, et al. Development of a 240 kJ modularized pulsed power supply[J]. High Power Laser and Particle Beams, 2022, 34: 095015 doi: 10.11884/HPLPB202234.210564
    [14] 邱关源. 电路[M]. 5版. 北京: 高等教育出版社, 2006

    Qiu Guanyuan. Circuits[M]. 5th ed. Beijing: Higher Education Press, 2006
    [15] 赵凯华, 陈熙谋. 电磁学[M]. 2版. 北京: 高等教育出版社, 1985

    Zhao Kaihua, Chen Ximou. Electromagnetics[M]. 2nd ed. Beijing: Higher Education Press, 1985
  • 加载中
图(11)
计量
  • 文章访问数:  195
  • HTML全文浏览量:  80
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-31
  • 修回日期:  2023-10-13
  • 录用日期:  2023-10-07
  • 网络出版日期:  2023-11-14
  • 刊出日期:  2024-01-12

目录

    /

    返回文章
    返回