地球科学进展 ›› 2016, Vol. 31 ›› Issue (11): 1151 -1158. doi: 10.11867/j.issn.1001-8166.2016.11.1151

上一篇    下一篇

有机碳—氧化铁结合对海洋环境中沉积有机碳保存的影响
赵彬 1, 2( ), 姚鹏 1,,A; *( ), 于志刚 1, 3   
  1. 1.中国海洋大学海洋化学理论与工程技术教育部重点实验室, 山东 青岛 266100
    2.中国海洋大学化学化工学院, 山东 青岛 266100
    3.青岛海洋科学与技术国家实验室海洋生态与环境科学功能实验室, 山东 青岛 266237
  • 收稿日期:2016-08-10 修回日期:2016-10-20 出版日期:2016-11-20
  • 通讯作者: 姚鹏 E-mail:zhaobin1988@hotmail.com;yaopeng@ouc.edu.cn
  • 基金资助:
    国家自然科学基金重点国际(地区)合作研究项目“长江口及邻近海域沉积有机碳的保存机制研究”(编号:41620104001);国家自然科学基金面上项目“长江口—东海内陆架沉积有机碳的再矿化作用研究”(编号:41676063)资助

The Effect of Organic Carbon-Iron Oxide Association on the Preservation of Sedimentary Organic Carbon in Marine Environments

Bin Zhao 1, 2( ), Peng Yao 1, *( ), Zhigang Yu 1, 3   

  1. 1.Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education,Qingdao 266100,China
    2.College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
    3.Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory forMarine Science and Technology, Qingdao 266237, China
  • Received:2016-08-10 Revised:2016-10-20 Online:2016-11-20 Published:2016-11-20
  • Contact: Peng Yao E-mail:zhaobin1988@hotmail.com;yaopeng@ouc.edu.cn
  • About author:

    First author:Zhao Bin(1988-),male,Qingdao City,Shandong Province,Ph.D. student. Research areas include oceanography and biogeochemistry.E-mail:zhaobin1988@hotmail.com

  • Supported by:
    Project supported by the Major International Joint Research Project of National Science Foundation of China “ Preservation mechanisms of sedimentary organic carbon in the Changjiang Estuary and adjacent shelf ”(No.41620104001);the National Natural Science Foundation of China“ Remineralization of sedimentary organic carbon in the Changjiang Estuary-East China Sea inner shelf ”(No.41676063)

有机碳在海洋环境中的长期保存机制一直是海洋碳循环研究的重点,也是研究气候变化与全球碳循环之间作用和反馈的关键。据估算,表层海洋沉积物中约20%的有机碳是通过与氧化铁的结合而保存下来的,因此与氧化铁结合是有机碳长期保存的关键因素之一。研究表明,有机碳—氧化铁复合物的形成主要通过吸附和共沉淀这2种机制,共沉淀反应是有机碳与氧化铁在海洋环境中结合的主导机制。不同来源的有机物在发生与铁氧化物的共沉淀或吸附作用时是有选择性的,在大部分海洋环境中铁氧化物优先与海洋有机碳结合,但在河口三角洲区域,铁氧化物优先与陆源有机碳结合。大量的陆源输入,较高的初级生产和频繁的再悬浮活动使河口边缘海特别适于开展有机碳—氧化铁结合的相关研究,这也是今后研究的重点方向。

Understanding the mechanisms responsible for long-term storage of organic carbon (OC) in marine environment is important for studying the marine carbon cycling and predicting how the global carbon cycle will respond to climate change. It is estimated that more than 20% of the OC in marine sediments is associated with iron oxides and thus these complexes are one of the most important factors in the long-term storage of OC. The OC-iron oxide (OC-Fe) association can be formed through either adsorption or co-precipitation, but the dominant mechanism of OC-Fe association in marine environments is co-precipitation. The combination of OC from different sources with iron oxides is selective. Iron oxides preferentially combine with marine OC in most marine environments, but in estuarine delta regions they prefer terrestrial OC. Due to large inputs of terrestrial materials, high primary production and frequent re-suspension, estuarine and marginal seas are suitable sites for OC-Fe association studies, which should be emphasized in the future.

中图分类号: 

图1 有机碳—氧化铁复合物的X光吸收精细结构谱 [ 20 ]
(a)为有机碳与氧化铁以吸附的方式结合;(b)为有机碳与氧化铁以共沉淀的方式结合(图中红色代表氧化铁,蓝色代表有机碳)
Fig.1 Color-coded composite maps of carbon and iron by X-ray absorption fine structure (EXAFS) [ 20 ]
(a)OC combined with iron oxides through adsorption; (b) OC combined with iron oxides through co-precipitation (blue represent organic carbon, red represent iron oxides)
图2 铁在沉积物—水界面与有机物的共沉淀反应(据参考文献[32]修改)
Fig.2 Co-precipitation of DOM with iron at sediment-water interface (modified after reference[32])
图3 不同海洋环境中沉积有机碳与氧化铁结合的比例(a)和铁结合态有机碳的稳定同位素组成(b)(据参考文献[14]修改,欧亚北极陆架数据来自参考文献[17]修改,蜡湖三角洲数据来自参考文献[18])
Fig.3 Percentage of the total sediment organic carbon bound to iron oxides (a) and carbon isotopic signatures of iron-bound organic carbon in different marine environments (b)(modified after reference[14], data of the Eurasian Arctic Shelf from reference[17], data of the Wax Lake Delta derived from reference[18])
[1] Khatiwala S,Primeau F,Hall T.Reconstruction of the history of anthropogenic CO2 concentrations in the ocean[J].Nature,2009, 462(7 271):346-349.
[2] Siegenthaler U,Sarmiento J L,Siegenthaler U,et al.Atmospheric carbon dioxide and the ocean[J].Nature,1993, 365(6 442):119-125.
[3] Sabine C L,Feely R A,Gruber N,et al.The oceanic sink for anthropogenic CO2[J]. Science, 2004, 305(5 682):367-371.
[4] Bianchi T S,Schreiner K M,Smith R W,et al.Redox effects on organic matter storage in coastal sediments during the Holocene: A biomarker/proxy perspective[J].Annual Review of Earth and Planetary Sciences,2016,44(1):295-319.
[5] Yu Zhigang, Yao Peng, Zhen Yu,et al.Advances in biogeochemical process in benthic boundary layer of estuarine and coastal area[J].Acta Oceanologica Sinica,2011,33(5):1-8.
[于志刚, 姚鹏, 甄毓, 等. 河口及近岸海域底边界层生物地球化学过程研究进展[J].海洋学报,2011,33(5):1-8.]
[6] Liu Jun,Yu Zhigang,Zang Jiaye,et al.Distribution and budget of organic carbon in the Bohai and Yellow Seas[J].Advances in Earth Science, 2015,30(5):564-578.
[刘军,于志刚,臧家业,等.黄渤海有机碳的分布特征及收支评估研究[J].地球科学进展,2015,30(5):564-578.]
[7] Huang Bangqin,Liu Xin.Review on planktonic ecosystem and its control on biological pump in the marginal seas[J].Advances in Earth Science,2015,30(3):385-395.
[黄邦钦,柳欣.边缘海浮游生态系统对生物泵的调控作用[J]. 地球科学进展,2015,30(3):385-395.]
[8] Hedges J I,Keil R G.Sedimentary organic matter preservation:An assessment and speculative synthesis[J].Marine Chemistry,1995, 49(2/3):81-115.
[9] Torn M S,Trumbore S E,Chadwick O A,et al.Mineral control of soil organic carbon storage and turnover[J].Nature,1997, 389(6 647):170-173.
[10] Kaiser K,Guggenberger G.Mineral surfaces and soil organic matter[J].European Journal of Soil Science,2003,54(2):219-236.
[11] Pronk G J,Heister K,Kögelknabner I.Iron oxides as major available interface component in loamy arable topsoils[J].Soil Science Society of America Journal,2011,75(6):2 158-2 168.
[12] Doetterl S,Berhe A A,Nadeu E,et al.Erosion,deposition and soil carbon:A review of process-level controls,experimental tools and models to address C cycling in dynamic landscapes[J].Earth-Science Reviews,2016,154:102-122,doi:10.1016/j.earscirev.2015.12.005.
[13] Lu Longfei,Cai Jingong,Bao Yujin,et al.Summary of processes and significance of clay minerals in marine sedimentary organic matter preservation and in global carbon cycle[J].Advances in Earth Science,2006,21(9):931-937.
[卢龙飞,蔡进功,包于进,等.粘土矿物保存海洋沉积有机质研究进展及其碳循环意义[J].地球科学进展,2006,21(9): 931-937.]
[14] Lalonde K,Mucci A,Ouellet A,et al.Preservation of organic matter in sediments promoted by iron[J].Nature,2012,483(7 388):198-200.
[15] Eglinton T I.A rusty carbon sink[J].Nature,2012,483(7 388):165-166.
[16] Mehra O P,Jackson M L.Iron oxide removal from soils and clays by adithionitecitrate system buffered with sodium bicarbonate[J].Clays Clay Minerals,1958,7(1):317-327.
[17] Salvadó J A,Tesi T,Andersson A,et al.Organic carbon remobilized from thawing permafrost is resequestered by reactive iron on the Eurasian Arctic Shelf[J].Geophysical Research Letters,2015,42(19):8 122-8 130.
[18] Shields M R,Bianchi T S,Gélinas Y,et al.Enhanced terrestrial carbon preservation promoted by reactive iron in deltaic sediments[J].Geophysical Research Letters,2016,43(3):1 149-1 157.
[19] Mikutta R,Lorenz D,Guggenberger G,et al.Properties and reactivity of Fe-organic matter associations formed by coprecipitation versus, adsorption:Clues from arsenate batch adsorption[J].Geochimica et Cosmochimica Acta,2014,144:258-276,doi:10.1016/j.gca.2014.08.026.
[20] Chen C,Dynes J J,Wang J,et al.Properties of Fe-organic matter associations via coprecipitation versus adsorption[J].Environmental Science and Technology,2014,48(23):13 751-13 759.
[21] Berner R A.Sedimentary pyrite formation[J].American Journal of Science,1970,268(1):1-23.
[22] Boudot J P,HadjBrahim A B,Steiman R,et al.Biodegradation of synthetic organo-metallic complexes of iron and aluminium with selected metal to carbon ratios[J].Soil Biology and Biochemistry,1989,21(7):961-966.
[23] Jones D L,Edwards A C.Influence of sorption on the biological utilization of two simple carbon substrates[J].Soil Biology and Biochemistry,1998,30(14):1 895-1 902.
[24] Tipping E.The adsorption of aquatic humic substances by iron-oxides[J].Geochimica et Cosmochimica Acta,1981,45(2):191-199.
[25] Gu B H,Schmitt J,Chen Z H,et al.Adsorption and desorption of natural organic matter on iron oxide:Mechanisms and models[J].Environmental Science and Technology,1995,28(1): 38-46.
[26] Lv J,Zhang S,Wang S,et al.Molecular-scale investigation with ESI-FT-ICR-MS on fractionation of dissolved organic matter induced by adsorption on iron oxyhydroxides[J].Environmental Science and Technology,2016,50(5):2 328-2 336.
[27] Kleber M,Mikutta R,Torn M S,et al.Poorly crystalline mineral phases protect organic matter in acid subsoil horizons[J].European Journal of Soil Science,2005,56(6):717-725.
[28] Van Der Zee C, Roberts D R, Rancourt D G, et al. Nanogoethite is the dominant reactive oxyhydroxide phase in lake and marine sediments[J]. Geology, 2003, 31(11): 993-996.
[29] Eusterhues K,Rennert T,Knicker H,et al.Fractionation of organic matter due to reaction with Ferrihydrite:Coprecipitation versus adsorption[J].Environmental Science and Technology,2011,45(2):527-533.
[30] Wagai R,Mayer L M.Sorptive stabilization of organic matter in soils by hydrous iron oxides[J].Geochimica et Cosmochimica Acta,2007,71(1):25-35.
[31] Eusterhues K,Neidhardt J,Hädrich A,et al.Biodegradation of ferrihydrite-associated organic matter[J].Biogeochemistry,2014, 119(1/3):45-50.
[32] Riedel T,Zak D,Biester H,et al.Iron traps terrestrially derived dissolved organic matter at redox interfaces[J].Proceedings of the National Academy of Sciences of the United States of America, 2013,110(25):10 101-10 105.
[33] Arnarson T S,Keil R G.Changes in organic matter-mineral interactions for marine sediments with varying oxygen exposure times[J].Geochimica et Cosmochimica Acta,2007,71(14):3 545-556
[34] Kaiser K,Guggenberger G.The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils[J].Organic Geochemistry,2000,31(7/8):711-725.
[35] Adhikari D,Yang Y.Selective stabilization of aliphatic organic carbon by iron oxide[J].Scientific Reports,2015,5(11 214):1-7.
[36] Kramer M G,Sanderman J,Chadwick O A,et al.Long-term carbon storage through retention of dissolved aromatic acids by reactive particles in soil[J].Global Change Biology,2012,18(8):2 594-2 605.
[37] Yao Peng,Guo Zhigang,Yu Zhigang.Research process in transport, burial and remineralization of organic carbon at large river dominated ocean margins[J].Acta Oceanologica Sinica,2014,36(2):23-32
[姚鹏,郭志刚,于志刚.大河影响下的陆架边缘海沉积有机碳的再矿化作用[J].海洋学报,2014,36(2):23-32.]
[38] Yao P,Zhao B,Bianchi T S,et al.Remineralization of sedimentary organic carbon in mud deposits of the Changjiang Estuary and adjacent shelf: Implications for carbon preservation and authigenic mineral formation[J]. Continental Shelf Research, 2014, 91:1-11,doi:10.1016/j.csr.2014.08.010.
[39] Guo Zhigang,Yang Zuosheng,Fan Dejiang,et al.Seasonal sedimentary effect on the Changjiang Estuary Mud area[J].Acta Geographica Sinica,2003,58(4):591-597.
[郭志刚,杨作升,范德江,等.长江口泥质区的季节性沉积效应[J].地理学报,2003,58(4):591-597.]
[1] 李向东. 复合流沉积特征的谱系研究现状及其理论框架[J]. 地球科学进展, 2021, 36(4): 375-389.
[2] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[3] 秦磊,毛金昕,倪凤玲,徐少华,李小刚,蔡长娥,尚文亮,刘家恺. 浅谈深水块体搬运复合体的结构、成因分类以及识别方法[J]. 地球科学进展, 2020, 35(6): 632-642.
[4] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[5] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[6] 吴泽燕,章程,蒋忠诚,罗为群,曾发明. 岩溶关键带及其碳循环研究进展[J]. 地球科学进展, 2019, 34(5): 488-498.
[7] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[8] 李向东,陈海燕,陈洪达. 鄂尔多斯盆地西缘桌子山地区上奥陶统拉什仲组深水复合流沉积[J]. 地球科学进展, 2019, 34(12): 1301-1315.
[9] 柳本立,牛百成,屈建军. 多组复合指纹示踪法及其应用[J]. 地球科学进展, 2019, 34(10): 1092-1098.
[10] 汪品先. 巽他陆架——淹没的亚马逊河盆地?[J]. 地球科学进展, 2017, 32(11): 1119-1125.
[11] 贾国东. 冰期出露的巽他陆架:重要的陆地碳储库?[J]. 地球科学进展, 2017, 32(11): 1157-1162.
[12] 聂红涛, 王蕊, 赵伟, 罗晓凡, 祁第, 鹿有余, 张远辉, 魏皓. 北冰洋太平洋扇区碳循环变化机制研究面临的关键科学问题与挑战[J]. 地球科学进展, 2017, 32(10): 1084-1092.
[13] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.
[14] 杜佳媛, 魏永鹏, 刘菲菲, 代燕辉, 赵建, 王震宇. 氧化石墨烯对环境污染物的吸附行为及吸附机理[J]. 地球科学进展, 2016, 31(11): 1125-1136.
[15] 吴金水, 葛体达, 祝贞科. 稻田土壤碳循环关键微生物过程的计量学调控机制探讨[J]. 地球科学进展, 2015, 30(9): 1006-1017.
阅读次数
全文


摘要