高压下SiO2的第一性原理计算

郝军华 吴志强 王铮 金庆华 李宝会 丁大同

郝军华, 吴志强, 王铮, 金庆华, 李宝会, 丁大同. 高压下SiO2的第一性原理计算[J]. 高压物理学报, 2010, 24(4): 260-266 . doi: 10.11858/gywlxb.2010.04.004
引用本文: 郝军华, 吴志强, 王铮, 金庆华, 李宝会, 丁大同. 高压下SiO2的第一性原理计算[J]. 高压物理学报, 2010, 24(4): 260-266 . doi: 10.11858/gywlxb.2010.04.004
HAO Jun-Hua, WU Zhi-Qiang, WANG Zheng, JIN Qing-Hua, LI Bao-Hui, DING Da-Tong. First Principles Calculation of SiO2 at High Pressures[J]. Chinese Journal of High Pressure Physics, 2010, 24(4): 260-266 . doi: 10.11858/gywlxb.2010.04.004
Citation: HAO Jun-Hua, WU Zhi-Qiang, WANG Zheng, JIN Qing-Hua, LI Bao-Hui, DING Da-Tong. First Principles Calculation of SiO2 at High Pressures[J]. Chinese Journal of High Pressure Physics, 2010, 24(4): 260-266 . doi: 10.11858/gywlxb.2010.04.004

高压下SiO2的第一性原理计算

doi: 10.11858/gywlxb.2010.04.004
详细信息
    通讯作者:

    郝军华

First Principles Calculation of SiO2 at High Pressures

More Information
    Corresponding author: HAO Jun-Hua
  • 摘要: 基于密度泛函理论(DFT)的第一性原理,采用Hartree-Fork(HF)方法,分别计算了SiO2的-石英结构、金红石结构以及氯化钙结构的总能量随体积的变化关系。利用Murnaghan状态方程,通过能量和体积拟合,得到了3种结构的体变模量及其对压强的一阶导数。计算结果表明,随着压强的增加,SiO2会从-石英结构转变为金红石结构,与实验结果和其它理论结果一致;金红石结构与氯化钙结构之间不存在相变,可以共存。此外,对具有-石英结构的SiO2的晶格常数、电子态密度和带隙随压强的变化关系进行了计算和分析,结果表明:加压作用下,能带向高能方向移动,Si─O键缩短,电子数转移增加,带隙展宽,电荷发生重新分布。

     

  • Kingma K J, Cohen R E, Hemley R J, et al. Transformation of Stishovite to a Denser Phase at Lower-Mantle Pressures [J]. Nature, 1995, 374(6519): 243-245.
    Tsuchida Y, Yagi T. New Pressure-Induced Transformations of Silica at Room Temperature [J]. Nature, 1990, 347: 267-269.
    Belonoshko A B, Dubrovinsky L S, Dubrovinsky N A. A New High-Pressure Silica Phase Obtained by Molecular Dynamics [J]. Am Mineral, 1996, 81: 785-788.
    Dubrovinsky L S, Saxena S K, Lazor P, et al. Experimental and Theoretical Identification of a New High-Pressure Phase of Silica [J]. Nature, 1997, 388(6640): 362-365.
    Liu L G, Bassett W A, Sharry J. New High-Pressure Modifications of GeO2 and SiO2 [J]. J Geophys Res, 1978, 83: 2301-2305.
    German V N, Podurets M A, Trunin R F. Synthesis of a High-Density Phase of Silicon Dioxide in Shock Waves [J]. Sov Phys JETP, 1973, 37: 107-108.
    Levien L, Prewitt C T, Weidner D J. Structure and Elastic Properties of Quartz at Pressure [J]. Am Mineral, 1980, 65(9-10): 920-930.
    Tsuchida Y, Yagi T. A New, Post-Stishovite High-Pressure Polymorph of Silica [J]. Nature, 1989, 340: 217-220.
    Teter D M, Hemley R J, Kresse G, et al. High Pressure Polymorphism in Silica [J]. Phys Rev Lett, 1998, 80(10): 2145-2148.
    Nada R, Nicholas J B, McCarthy M I, et al. Basis Sets for ab Initio Periodic-Fock Studies of Zeolite/Adsorbate Interactions: He, Ne, and Ar in Silica Sodalite [J]. Int J Quantum Chem, 1996, 60(4): 809-820.
    Corno M, Busco C, Civalleri B, et al. Periodic ab Initio Study of Structural and Vibrational Features of Hexagonal Hydroxyapatite Ca10(PO4)6(OH)2 [J]. Phys Chem Chem Phys, 2006, 8(21): 2464-2472.
    Jaffe J E, Pandey R, Seel M J. Ab Initio High-Pressure Structural and Electronic Properties of ZnS [J]. Phys Rev B, 1993, 47(11): 6299-6303.
    Orlando R, Dovesi R, Roetti C, et al. Ab Initio Hartree-Fock Calculations for Periodic Compounds: Application to Semiconductors [J]. J Phys: Condens Matter, 1990, 2(38): 7769-7789.
    Murnaghan F D. The Compressibility of Media under Extreme Pressures [J]. Proc Natl Acad Sci U S A, 1944, 30(9): 244-247.
    Jaffe J E, Hess A C. Hartree-Fock Study of Phase Changes in ZnO at High Pressure [J]. Phys Rev B, 1993, 48(11): 7903-7909.
    Keskar N R, Chelikowsky J R. Structural Properties of Nine Silica Polymorphs [J]. Phys Rev B, 1992, 46(1): 1-13.
    Stishov S M, Popova S V. A New Dense Modification of Silica [J]. Geokhimiya, 1961, 10: 837-839.
    Lityagina L M, Dyuzheva T I, Nikolaev N A, et al. Hydrothermal Crystal Growth of Stishovite (SiO2) [J]. J Cryst Growth, 2001, 222(3): 627-629.
    Karki B B, Warren M C, Stixrude L, et al. Ab Initio Studies of High-Pressure Structural Transformations in Silica [J]. Phys Rev B, 1997, 55(6): 3465-3471.
    Maj S. Energy Gap and Density in SiO2 Polymorphs [J]. Phys Chem Miner, 1988, 15(3): 271-273.
    Nitsan U, Shankland T J. Optical Energy Gap in Silicates [J]. EOS, 1976, 57(3): 160.
  • 加载中
计量
  • 文章访问数:  7622
  • HTML全文浏览量:  504
  • PDF下载量:  696
出版历程
  • 收稿日期:  2009-06-23
  • 修回日期:  2009-09-02
  • 发布日期:  2010-08-15

目录

    /

    返回文章
    返回