Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-26T06:57:20.477Z Has data issue: false hasContentIssue false

The mineralogy of the historical Mochalin Log REE deposit, South Urals, Russia. Part V. Zilbermintsite-(La), (CaLa5)(Fe3+Al3Fe2+)[Si2O7][SiO4]5O(OH)3, a new mineral with ET2 type structure and a definition of the radekškodaite group

Published online by Cambridge University Press:  21 March 2024

Anatoly V. Kasatkin*
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
Natalia V. Zubkova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Radek Škoda
Affiliation:
Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
Igor V. Pekov
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Atali A. Agakhanov
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
Vladislav V. Gurzhiy
Affiliation:
Department of Crystallography, Institute of Earth Sciences, St. Petersburg State University, University Emb. 7/9, 199034 Saint-Petersburg, Russia
Dmitriy A. Ksenofontov
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Dmitriy I. Belakovskiy
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
Aleksey M. Kuznetsov
Affiliation:
Independent Researcher, Chelyabinsk, Russia
*
Corresponding author: Anatoly V. Kasatkin; Email: anatoly.kasatkin@gmail.com

Abstract

The new mineral zilbermintsite-(La), ideally (CaLa5)(Fe3+Al3Fe2+)[Si2O7][SiO4]5O(OH)3, was found in a single polymineralic nodule from the Mochalin Log REE deposit, Chelyabinsk Oblast, South Urals, Russia. Zilbermintsite-(La) forms anhedral grains up to 0.65 × 0.20 mm at the contact of ferriperbøeite-(La), törnebohmite-(La) and ferriallanite-(Ce). Other associated minerals include bastnäsite-(La), biraite-(La), ferriallanite-(La), ferriperbøeite-(Ce), fluorbritholite-(Ce), monazite-(La), perbøeite-(La), percleveite-(Ce), percleveite-(La), perrierite-(Ce), perrierite-(La), thorianite, thorite and quartz. The new mineral is light brown, translucent in thin fragments with a vitreous lustre. It is brittle, with good {100} cleavage. Mohs hardness is ca. 6. Dcalc = 4.684 g cm–3. Optically, zilbermintsite-(La) is biaxial (+), α = 1.805(7), β = 1.812(7) and γ = 1.867(8) (589 nm); 2Vmeas = 40(15)° and 2Vcalc = 40°. The empirical formula based on O28(OH,F)3 apfu is (Ca0.94La2.56Ce2.18Nd0.20Pr0.10Th0.02)Σ6.00(Al2.96Fe3+0.90Fe2+0.64Mg0.34Mn0.13Ti0.03)Σ5.00Si7.00O28[(OH)2.42F0.58]. Zilbermintsite-(La) is monoclinic, P21/m; the unit-cell parameters are: a = 8.9605(5), b = 5.7295(2), c = 25.1033(13) Å, β = 116.616(7), V = 1152.21(12) Å3 and Z = 2. The crystal structure of zilbermintsite-(La) is solved from the single-crystal X-ray diffraction data [R = 0.0757 for 2857 unique reflections with I > 2σ(I)]. The new mineral is isotypic to radekškodaite-(La) and radekškodaite-(Ce) and together with them forms the newly defined radekškodaite group. All members of this group possess the ET2 type structure where one epidote-type module (E) regularly alternates with two törnebohmite-type modules (T). The new mineral honours Professor Veniamin A. Zilbermints (1887–1939) who was a pioneer of the study of the Mochalin Log deposit. The Levinson suffix-modifier -(La) indicates the predominance of La among rare-earth elements in the mineral.

Type
Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Mihoko Hoshino

References

Andò, S. and Garzanti, E. (2014) Raman spectroscopy in heavy-mineral studies. Geological Society of London, Special Publications, 386, 395412.CrossRefGoogle Scholar
Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 146, 104107 [in Russian].Google Scholar
Čopjaková, R., Škoda, R., Vašinová Galiová, M., Novák, M. and Cempírek, J. (2015) Sc- and REE-rich tourmaline replaced by Sc-rich REE-bearing epidote-group mineral from the mixed (NYF plus LCT) Kracovice pegmatite (Moldanubian Zone, Czech Republic). American Mineralogist, 100, 14341451.CrossRefGoogle Scholar
Crystal Impact (2014) Diamond – Crystal and Molecular Structure Visualization. Dr. H. Putz & Dr. K. Brandenburg GbR, Kreuzherrenstr. 102, 53227 Bonn, Germany, http://www.crystalimpact.com/diamond.Google Scholar
Dowty, E. (2000) ATOMS - Atomic Structure Display. Version 5.1. Kingsport, Indiana, USA.Google Scholar
Ferraris, G. and Ivaldi, G. (1988) Bond valence vs. bond length in O⋅⋅⋅O hydrogen bonds. Acta Crystallographica, B44, 341344.CrossRefGoogle Scholar
Gagné, O.C. and Hawthorne, F.C. (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google ScholarPubMed
Holland, T.J.B. and Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 6577.CrossRefGoogle Scholar
Holtstam, D., Kolitsch, U. and Andersson, U.B. (2005) Västmanlandite-(Ce) – a new lanthanide- and F-bearing sorosilicate mineral from Västmanland, Sweden: description, crystal structure, and relation to gatelite-(Ce). European Journal of Mineralogy, 17, 129141.CrossRefGoogle Scholar
Kasatkin, A.V., Zubkova, N.V., Pekov, I.V., Chukanov, N.V., Škoda, R., Polekhovsky, Y.S., Agakhanov, A.A., Belakovskiy, D.I., Kuznetsov, A.M., Britvin, S.N. and Pushcharovsky, D.Yu. (2020a) The mineralogy of the historical Mochalin Log REE deposit, South Urals, Russia. Part I. New gatelite-group minerals ferriperbøeite-(La), (CaLa3)(Fe3+Al2Fe2+)[Si2O7][SiO4]3O(OH)2, and perbøeite-(La), (CaLa3)(Al3Fe2+)[Si2O7][SiO4]3O(OH)2. Mineralogical Magazine, 84, 593607.CrossRefGoogle Scholar
Kasatkin, A.V., Zubkova, N.V., Pekov, I.V., Chukanov, N.V., Ksenofontov, D.A., Agakhanov, A.A., Belakovskiy, D.I., Polekhovsky, Yu.S., Kuznetsov, A.M., Britvin, S.N., Pushcharovsky, D.Yu. and Nestola, F. (2020b) The mineralogy of the historical Mochalin Log REE deposit, South Urals, Russia. Part II. Radekškodaite-(La), (CaLa5)(Al4Fe2+)[Si2O7][SiO4]5O(OH)3, and radekškodaite-(Ce), (CaCe5)(Al4Fe2+)[Si2O7] [SiO4]5O(OH)3, two new minerals with a novel-type structure belonging to epidote–törnebohmite polysomatic series. Mineralogical Magazine, 84, 839853.CrossRefGoogle Scholar
Kasatkin, A.V., Zubkova, N.V., Pekov, I.V., Chukanov, N.V., Škoda, R., Agakhanov, A.A., Belakovskiy, D.I., Plášil, J., Kuznetsov, A.M., Britvin, S.N. and Pushcharovsky, D.Yu. (2020c) The mineralogy of the historical Mochalin Log REE deposit, South Urals, Russia. Part III. Percleveite-(La), La2Si2O7, a new REE disilicate mineral. Mineralogical Magazine, 84, 913920.CrossRefGoogle Scholar
Kasatkin, A.V., Zubkova, N.V., Pekov, I.V., Chukanov, N.V., Škoda, R., Agakhanov, A.A., Belakovskiy, D.I., Britvin, S.N. and Pushcharovsky, D.Yu. (2021) The mineralogy of the historical Mochalin Log REE deposit, South Urals, Russia. Part IV. Alexkuznetsovite-(La), La2Mn(CO3)(Si2O7), alexkuznetsovite-(Ce), Ce2Mn(CO3)(Si2O7), and biraite-(La), La2Fe2+(CO3)(Si2O7), three new isostructural minerals and a definition of the biraite group. Mineralogical Magazine, 85, 772783.CrossRefGoogle Scholar
Kasatkin, A.V., Zubkova, N.V., Škoda, R., Pekov, I.V., Agakhanov, A.A., Gurzhiy, V.V., Ksenofontov, D.A., Belakovskiy, D.I. and Kuznetsov, A.M. (2023) Zilbermintsite-(La), IMA 2023-063. CNMNC Newsletter 76. Mineralogical Magazine, 88, 105109, https://doi.org/10.1180/mgm.2023.89Google Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship. IV. The compatibility concept and its application. The Canadian Mineralogist, 41, 9891002.Google Scholar
Mills, S.J., Hatert, F., Nickel, E.H. and Ferraris, G. (2009) The standardisation of mineral group hierarchies: application to recent nomenclature proposals. European Journal of Mineralogy, 21, 10731080.CrossRefGoogle Scholar
Rigaku Oxford Diffraction (2018) CrysAlisPro Software System, v. 1.171.39.46, Rigaku Corporation, Oxford, UK.Google Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google ScholarPubMed
Silberminz, V. (1929) Sur le gisement de cerite, de bastnäsite et d'un minéral nouveau la lessingite dans le district minier de Kychtym (Oural). Comptes Rendus de l'Academie des Sciences de Russie A, 3, 5560 [in French].Google Scholar
Sobek, K., Losos, Z., Škoda, R., Holá, M. and Nasdala, L. (2023) Crystal chemistry of ferriallanite-(Ce) from Nya Bastnäs, Sweden: Chemical and spectroscopic study. Mineralogy and Petrology, 117, 345357.CrossRefGoogle Scholar
Wang, A., Han, J., Guo, L., Yu, J. and Zeng, P. (1994) Database of standard Raman spectra of minerals and related inorganic crystals. Applied Spectroscopy, 48, 959968.CrossRefGoogle Scholar
Zilbermints, V.A. (1928) The primary deposit of cerite in Kyshtym district. Mineral'noe syr'e (Mineral Raw Materials), 9/10, 619620 [in Russian].Google Scholar
Zilbermints, V.A. (1930) The cerite deposit in Kyshtym district (Urals) – in: Rare-earth minerals of Kyshtym area. Trudy Instituta prikladnoy mineralogii (Proceedings of the Institute of Applied Mineralogy), 44, 542 [in Russian].Google Scholar
Supplementary material: File

Kasatkin et al. supplementary material 1

Kasatkin et al. supplementary material
Download Kasatkin et al. supplementary material 1(File)
File 184.1 KB
Supplementary material: File

Kasatkin et al. supplementary material 2

Kasatkin et al. supplementary material
Download Kasatkin et al. supplementary material 2(File)
File 709.2 KB