• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
刘成禹, 陈博文, 林炜, 罗洪林. 地下管道破损诱发沉降的预测模型及试验验证[J]. 岩土工程学报, 2021, 43(3): 416-424. DOI: 10.11779/CJGE202103003
引用本文: 刘成禹, 陈博文, 林炜, 罗洪林. 地下管道破损诱发沉降的预测模型及试验验证[J]. 岩土工程学报, 2021, 43(3): 416-424. DOI: 10.11779/CJGE202103003
LIU Cheng-yu, CHEN Bo-wen, LIN Wei, LUO Hong-lin. Prediction model for settlement caused by damage of underground pipelines and its experimental verification[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 416-424. DOI: 10.11779/CJGE202103003
Citation: LIU Cheng-yu, CHEN Bo-wen, LIN Wei, LUO Hong-lin. Prediction model for settlement caused by damage of underground pipelines and its experimental verification[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 416-424. DOI: 10.11779/CJGE202103003

地下管道破损诱发沉降的预测模型及试验验证

Prediction model for settlement caused by damage of underground pipelines and its experimental verification

  • 摘要: 设计了一套富水砂层中管道破损诱发地面沉降的试验系统,对骨架粒径d90=1.45~8.45 mm的11种土样,在6种渗透比降和管道满流流速下,土体渗流侵蚀诱发地面沉降的规律进行了研究。在此基础上,提出了地下管道破损诱发地面沉降的预测模型。研究表明:①富水砂层中管道破损是否会诱发沉降,主要由土体骨架粒径d90、破损口直径D和厚跨比hs/D决定;发生沉降的土体骨架粒径d90最大值,需同时满足破损口直径D和厚跨比hs/D两个条件,并取两者中的较小值;②富水砂层中管道破损诱发沉降的区域平面上呈圆形、剖面上呈倒置三角形,坡面角与土体饱和内摩擦角接近;沉降区顶面半径和沉降深度随满流流速u和渗透比降hw/hs的增加而增大,随厚跨比hs/D的增大而减小;③在曼宁公式基础上推导出的沉降半径、沉降深度预测公式,规律上与试验结果一致,数值上与试验结果接近,可用于富水砂层中管道破损诱发地面沉降的预测。

     

    Abstract: A set of test system of ground settlement caused by damage of pipelines in water-rich sand layers is designed. For 11 kinds of soil samples with frame diameter d90 of 1.45~8.45 mm under 6 kinds of permeability ratio drops and full flow velocity of pipelines, the laws of ground settlement induced by seepage erosion of soil mass are studied. On this basis, a prediction model for ground settlement induced by damage of underground pipelines is proposed. The results show: (1) Whether the pipeline damage will induce settlement in the water-rich sand layers is mainly determined by the soil skeleton particle size d90, the diameter D of the damaged mouth and the thickness span ratio hS/D. The maximum value of the soil skeleton particle size d90 that causes the settlement should meet both the conditions of the diameter D of the damaged mouth and the thickness span ratio hs/D, and take the smaller value of the two. (2) In the water-rich sand layers, the area of pipeline damage-induced settlement is circular in plane and inverted triangle in section, and the slope angle is close to the saturated internal friction angle of soils. The top radius and settlement depth of settlement area increase with the increase of full flow velocity u and permeability ratio drop hw/hs, and decrease with the increase of thickness span ratio hs/D. (3) Based on the Manning's formula, the prediction formulas for settlement radius and settlement depth are deduced, and are consistent with the test results in law and close to the test results in numerical value. They can be used to predict the settlement caused by damage of pipelines in water-rich sand layers.

     

/

返回文章
返回