Skip to main content

Advertisement

Log in

The Impact of Immunosuppressive Drugs on Human Placental Explants

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The use of immunosuppressive drugs guarantees the vitality of the graft and allows gestation in spite of intercurrences such as prematurity and intrauterine growth restriction. However, little is known about the direct effects of immunosuppressive drugs on placental cells. We investigated the effects of immunosuppressive drugs in the chorionic villous explants from human term placentas of healthy gestations. Human placental explants from term gestations (37-39 week gestational age, n = 12) were exposed to cyclosporine A (CSA, 0, 62.5, 125, 1250 ng/mL) or azathioprine (AZA, 0, 5, 10, 100 ng/mL) separately or, in combination for up to 48 hours. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays showed a significant decrease in the explant metabolic activity between AZA and the control group (24 hours, 100 ng/mL, 48 hours, all concentrations, P <.005). Cyclosporin A (CsA) reduced cell activity when associated with AZA (48 hours, P <.005). Fibrinoid deposits increased in AZA-treated explants alone (5 ng/mL, 48 hours; 10 ng/mL, 24–48 hours; P <.005) or when associated with CsA (10 AZA/125 CsA, P <.05), whereas in CsA treatment alone, there was an augment in syncytial knots (24–48 hours, P <.005). The sFLT1 gene (24 hours, P <.05) and protein (P <.005) expression increased in AZA and CsA-treatments separately or in combination (P <.05). Placental growth factor increased in AZA (24 hours, 10 ng/mL) and CsA (125 ng/mL; P <.05). In conclusion, our data indicate that AZA primarily acts on the villous metabolism, perturbing placental homeostasis. Since these drugs may alter the balance of angiogenic factors in its selection for clinical application, their impact on the behavior of placental villous should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brogan PA, Dillon MJ. The use of immunosuppressive and cytotoxic drugs in non-malignant disease. Arch Dis Child. 2000;83(3):259–264.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Zand MS. Immunosuppression and immune monitoring after renal transplantation. Semin Dial. 2005;18(6):511–519.

    PubMed  Google Scholar 

  3. Alston PK, Kuller JA, McMahon MJ. Pregnancy in transplant recipients. Obstet Gynecol Surv. 2001;56(5):289–295.

    CAS  PubMed  Google Scholar 

  4. Josephson MA, Mckay DB. Considerations in the medical management of pregnancy in transplant recipients. Adv Chronic Kidney Dis. 2007;14(2):156–167.

    PubMed  Google Scholar 

  5. Josephson MA, Mckay DB. Pregnancy and kidney transplantation. Semin Nephrol. 2011;31(1):100–110.

    PubMed  Google Scholar 

  6. Oliveira LG, Sass N, Sato JL, Osaki KS, Medina-Pestana JO. Pregnancy after renal transplantation — a five-yr single-center experience. Clin Transplant. 2007;21(3):301–304.

    PubMed  Google Scholar 

  7. Armenti VT, Constantinescu S, Moritz MJ, Davison JM. Pregnancy after transplantation. Transplant Rev. 2008;22(4):223–240.

    Google Scholar 

  8. Svetitsky S, Baruch R, Schwartz IF, et al. Long-term effects of pregnancy on renal graft function in women after kidney transplantation compared with matched controls. Transplant Proc. 2018;50(5):1461–1465.

    CAS  PubMed  Google Scholar 

  9. Parolin MB, Coelho JCU, Urbanetz AA, Pampuch M. Contraception and pregnancy after liver transplantation — an update overview. Arch Gastroenterol. 2009;46(2):154–158.

    Google Scholar 

  10. Townsend R, O’Brien P, Khalil A. Current best practice in the management of hypertensive disorders in pregnancy. Integr Blood Press Control. 2016;9:79–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sava RI, March KL, Pepine CJ. Hypertension in pregnancy: taking cues from pathophysiology for clinical practice. Clin Cardiol. 2018;41(2):220–227.

    PubMed  PubMed Central  Google Scholar 

  12. Benirschke K, Kaufmann P, Baergen RN. Pathology of the Human Placenta. New York, NY: Springer-Verlag; 2006.

    Google Scholar 

  13. Red-Horse K, Zhou Y, Genbacev O, et al. Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface. J Clin Invest. 2004;114(6):744–754.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Vause S, Saroya DK. Functions of the placenta. Anaesthesia. 2005;6:77–80.

    Google Scholar 

  15. Shah DA, Khalil RA Bioactive factors in uteroplacental and systemic circulation link placental ischemia to generalized vascular dysfunction in hypertensive pregnancy and preeclampsia. Biochem Pharmacol. 2015;95(4):211–226.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Thellin O, Heinen E. Pregnancy and the immune system: between tolerance and rejection. Toxicology. 2003;185(3):179–184.

    CAS  PubMed  Google Scholar 

  17. Oz BB, Hackman R, Einarson T, Koren G. Pregnancy outcome after cyclosporine therapy during pregnancy: a meta-analysis1. Transplantation. 2001;71(8):1051–1055.

    CAS  PubMed  Google Scholar 

  18. Janssen NM, Genta MS. The effects of immunosuppressive and anti-inflammatory medications on fertility, pregnancy, and lactation. Arch Intern Med. 2000;160(5):610–619.

    CAS  PubMed  Google Scholar 

  19. Ghanem ME, El-Baghdadi LA, Badawy AM, Bakr MA, Sobhe MA, Ghoneim MA. Pregnancy outcome after renal allograft transplantation: 15 years experience. Eur J Obstet Gynecol Reprod Biol. 2005;121(2):178–181.

    CAS  PubMed  Google Scholar 

  20. Du MR, Zhou WH, Dong L, et al. Cyclosporin A promotes growth and invasiveness in vitro of human first-trimester trophoblast cells via MAPK3/MAPK1-mediated AP1 and Ca2þ/calcineurin/NFAT signalling pathways. Biol Reprod. 2008;78(6):1102–1110.

    CAS  PubMed  Google Scholar 

  21. Hoffmann M, Rychlewski J, Chrzanowska M, Hermann T. Mechanism of activation of an immunosuppressive drug: azathioprine. Quantum chemical study on the reaction of azathioprine with cysteine. J Am Chem Soc. 2001;123(26):6404–6409.

    CAS  PubMed  Google Scholar 

  22. Maltzman JS, Koretzky GA. Azathioprine: old drug, new actions. J Clin Invest. 2003;111(8):1122–1124.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Berridge MV, Tan AS. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys. 1993;303(2):474–482.

    CAS  PubMed  Google Scholar 

  24. Riss TL, Moravec RA. Use of multiple assay endpoints to investigate the effects of incubation time, doses of toxin, and plating density in cell-based cytotoxicity assays. Assay Drug Dev Technol. 2004;2(1):51–62.

    CAS  PubMed  Google Scholar 

  25. Ruifrok AC, Katz RL, Johnston DA. Comparison of Quantification of Histochemical Staining By Hue-Saturation-Intensity (HSI) Transformation and Color-Deconvolution. Appl Immunohistochem Mol Morphol. 2003;11(1):85–91.

    CAS  PubMed  Google Scholar 

  26. de Mattos AM, Olyaei AJ, Bennett WM. Nephrotoxicity of immunosuppressive drugs: long-term consequences and challenges for the future. Am J Kidney Dis. 2000;35:333–346.

    PubMed  Google Scholar 

  27. Pacheco Neto M, Alves ANL, Fortini AS, et al. Therapeutic drug monitoring of azathioprine: a review. J Bras Patol Med Lab. 2008;44(3):161–167.

    CAS  Google Scholar 

  28. Wang L, Weinshilboum R. Thiopurine S-methyltransferase pharmacogenetics: insights, challenges and future directions. Oncogene. 2006;25(11):1629–1638.

    CAS  PubMed  Google Scholar 

  29. Boer NKH, Jarbandhan PG, Mulder CJJ, van Elburg RM, van Bodegraven AA. Azathioprine use during pregnancy: unexpected Intrauterine Exposure to Metabolites. Am J Gastroenterol. 2006;101(6):1390–1392.

    PubMed  Google Scholar 

  30. Narasimha A, Vasudeva DS. Spectrum of changes in placenta in toxemia of pregnancy. Indian J Pathol Microbiol. 2011;54(1):15–20.

    PubMed  Google Scholar 

  31. Bukowski R, Hansen NI, Pinar H, et al. Altered fetal growth, placental abnormalities, and stillbirth. PLoS One. 2017;12(8):e0182874.

    PubMed  PubMed Central  Google Scholar 

  32. Frank HG, Malekzadeh F, Kertschanska S, et al. Immunohistochemistry of two different types of placental fibrinoid. Acta Anat. 1994;150(1):55–68.

    CAS  PubMed  Google Scholar 

  33. Kaufmann P, Huppertz B, Frank HG. The fibrinoids of the human placenta: origin, composition and functional relevance. Ann Anat. 1996;178(6):485–501.

    CAS  PubMed  Google Scholar 

  34. Bhattacharjee P, Bhattacharyya D. An enzyme from Aristolochia indica destabilizes fibrin-β amyloid co-aggregate: implication in cerebrovascular diseases. PLoS One. 2015;10(11):e0141986.

    PubMed  PubMed Central  Google Scholar 

  35. Mayhew TM. Fetoplacental angiogenesis during gestation is biphasic, longitudinal and occurs by proliferation and remodelling of vascular endothelial cells. Placenta. 2002;23(10):742–750.

    PubMed  Google Scholar 

  36. Shibuya M. Vascular endotelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases. J Biochem. 2013;153(1):13–19.

    CAS  PubMed  Google Scholar 

  37. Maynard SE, Min JY, Merchan J, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111(5):649–658.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Verlohren S, Stepan H, Dechend R. Angiogenic growth factors in the diagnosis and prediction of pre-eclampsia. Clin Sci (Lond). 2012;122(2):43–52.

    CAS  Google Scholar 

  39. Fesk S, Draeger R, Peter HH, Eichmann K, Rao A. The duration of nuclear residence of NFAT determines the pattern of cytokine expression in human SCID T cells. J Immunol. 2000;165(1):297–305.

    Google Scholar 

  40. Ye L, Gratton A, Hannan NJ, et al. Nuclear factor of activated T-cells (NFAT) regulates soluble fms-like tyrosine kinase-1 secretion (sFlt-1) from human placenta. Placenta. 2016;48:110–118.

    CAS  PubMed  Google Scholar 

  41. Wang SC, Tang ChL, Piao HL, et al. Cyclosporine A promotes in vitro migration of human first-trimester trophoblasts via MAPK/ERK1/2-mediated NF-κB and Ca2+/calcineurin/NFAT signaling. Placenta. 2013;34(4):374–380.

    CAS  PubMed  Google Scholar 

  42. Du MR, Dong L, Zhou WH, et al. Cyclosporine A induces titin expression via MAPK/ERK signalling and improves proliferative and invasive potential of human trophoblast cells. Hum Reprod. 2007;22(9):2528–2537.

    CAS  PubMed  Google Scholar 

  43. Yu N, Liang Y, Zhu H, Mo H, Pei H. CsA Promotes XIST Expression to Regulate Human Trophoblast Cells Proliferation and Invasion Through miR-144/Titin Axis. J Cell Biochem. 2017;118(8):2208–2218.

    CAS  PubMed  Google Scholar 

  44. Colla L, Diena D, Rossetti M, Manzione AM, Marozio L, Benedetto C, Biancone L. Immunosuppression in pregnant women with renal disease: review of the latest evidence in the biologics era. J Nephrol. 2018;31(3):361–383.

    CAS  PubMed  Google Scholar 

  45. Bergan S, Bentdal O, Sodal G, Brun A, Rugstad HE, Stokke O. Patterns of azathioprine metabolites in neutrophils, lymphocytes, reticulocytes, and erythrocytes: relevance to toxicity and monitoring in recipients of renal allografts. Ther Drug Monit. 1997;19(5):502–509.

    CAS  PubMed  Google Scholar 

  46. Eklund BI, Gunnarsdottir S, Elfarra AA, Mannervik B. Human glutathione transferases catalyzing the bioactivation of anticancer thiopurine prodrugs. Biochem Pharmacol. 2007;73(11):1829–1841.

    CAS  PubMed  Google Scholar 

  47. Norgård B, Pedersen L, Christensen LA, SØrensen HT. Therapeutic drug use in women with Chron’s disease and birth outcomes. A Danish nationwide cohort study. Am J Gastroenterol. 2007;102(7):1406–1413.

    PubMed  Google Scholar 

  48. Platzek T, Schwabe R, Rahm U, Bochert G. DNA modification induced by 6-mercaptopurine riboside in murine embryos. Chem Biol Interact. 1994;93(1):59–71.

    CAS  PubMed  Google Scholar 

  49. Chaabane W, Appell ML. Interconnections between apoptotic and autophagic pathways during thiopurine-induced toxicity in cancer cells: the role of reactive oxygen species. Oncotarget. 2016;7(46):75616–75634.

    PubMed  PubMed Central  Google Scholar 

  50. Lee AU, Farrell GC. Mechanism of azathioprine-induced injury to hepatocytes: roles of glutathione depletion and mitochondrial injury. J Hepatol. 2001;35(6):756–764.

    CAS  PubMed  Google Scholar 

  51. Matalon ST, Ornoy A, Fishman A, Drucker L, Lishner M. The effect of 6-mercaptopurine on early human placental explants. Human Reprod. 2005;20(5):1390–1397.

    Google Scholar 

  52. Malhotra SS, Gupta SK. Relevance of the NR4A sub-family of nuclear orphan receptors in trophoblastic BeWo cell differentiation. Cell Mol Biol Lett. 2017;22:15.

    PubMed  PubMed Central  Google Scholar 

  53. Ordentlich P, Yan Y, Zhou S, Heyman RA. Identification of the Antineoplastic Agent 6-Mercaptopurine as an Activator of the Orphan Nuclear Hormone Receptor Nurr1. J Biol Chem. 2003;278(27):24791–24799.

    CAS  PubMed  Google Scholar 

  54. Bertolin K, Bellefleur AM, Zhang C, Murphy BD. Orphan nuclear receptor regulation of reproduction. Anim Reprod. 2010;7(3):146–153.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estela Bevilacqua PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, S.Z., Araujo, F., Bandeira, C.L. et al. The Impact of Immunosuppressive Drugs on Human Placental Explants. Reprod. Sci. 26, 1225–1234 (2019). https://doi.org/10.1177/1933719118812739

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719118812739

Keywords

Navigation