Skip to main content

Advertisement

Log in

Regeneration of the Fallopian Tube Mucosa Using Bone Marrow Mesenchymal Stem Cell Transplantation After Induced Chemical Injury in a Rat Model

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

In this study, we describe a novel insight about the use of bone marrow-derived mesenchymal stem cells (BM-MSCs) for fallopian tube (FT) regeneration. Seventy rats’ tubes were involved in this study and divided into 4 groups: control (15), ethanol injured (20), mesenchymal stem cell (MSC)-recipient without injury (15), and MSC recipient after injury (20). The BM-MSCs were isolated from male rats, and their incorporation into the tissues was confirmed by the detection of Sry gene in MSC-recipient rats using RT-PCR. Histological and immunohistological sections of the 4 groups were comparably evaluated. We found that direct injection of ethanol into FT caused structural impairment, which was restored largely after receiving MSCs. We have revealed for the first time that prominin I (Prom I, stem cell marker) was expressed in the fimbriated distal tubal end. The MSC transplantation caused (1) significant increase in the tissue level and immunoexpresstion of Prom I (P <.001 and P =.017, respectively) and vascular endothelial growth factor (VEGF; vasculogenic marker; P <.001 and P =.004, respectively), (2) significant increase in the immunoexpresstion of proliferating cell nuclear antigen (PCNA; proliferation marker; P <.001), and (3) significant decrease in the immunoexpresstion of caspase 3 (CASP-3; apoptotic marker; P <.001) compared to the injured tissues. In conclusion, MSCs could exhibit its restorative effect on FT through their ability to (I) activate the resident stem cells in the distal tubal end, (2) mediate the expression of VEGF and PCNA, and (3) influence tissue apoptosis. This study laid the foundation for assessing the contribution of stem cells in the distal tubal end in direct repair of the tube when required to assist reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Patil M. Assessing tubal damage. J Hum Reprod Sci. 2009;2(1): 2–11.doi:10.4103/0974-1208.51335.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Paik DY, Janzen DM, Schafenacker AM, et al. Stem-like epithe-lial cells are concentrated in the distal end of the fallopian tube: a site for injury and serous cancer initiation. Stem Cells. 2012; 30(11):2487–2497. doi:10.1002/stem.l207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Patterson AL, Pru JK. Long-term label retaining cells localize to distinct regions within the female reproductive epithelium. Cell Cycle. 2013;12(17):2888–2898. doi:10.4161/cc.25917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang Y, Sacchetti A, van Dijk MR, et al. Identification of quies-cent, stem-like cells in the distal female reproductive tract. PLoS One. 2012;7(7). doi:10.1371/journal.pone.0040691.

    Google Scholar 

  5. King SM, Hilliard TS, Wu LY, Jaffe RC, Fazleabas AT, Burdette JE. The impact of ovulation on fallopian tube epithelial cells: evaluating three hypotheses connecting ovulation and serous ovarian cancer. Endocr Relat Cancer. 2011;18(5):627–642. doi:10.1530/ERC-ll-0107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Elfayomy AK, Almasry SM, El-Tarhouny SA, Eldomiaty MA. Human umbilical cord blood-mesenchymal stem cells transplan-tation renovates the ovarian surface epithelium in a rat model of premature ovarian failure: possible direct and indirect effects. Tissue Cell. 2016;48(4). doi:10.1016/j.tice.2016.05.001.

    Google Scholar 

  7. Minguell JJ, Erices A. Mesenchymal stem cells and the treatment of cardiac disease. Exp Biol Med (Maywood). 2006;231(1):39–49.

    Article  CAS  Google Scholar 

  8. Ortiz LA, Dutreil M, Fattman C, et al. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci CX4. 2007;104(26):11002–11007.doi:10.1073/pnas.0704421104.

    Article  CAS  Google Scholar 

  9. Zhao J, Zhang Q, Wang Y, Li Y. Uterine infusion with bone marrow mesenchymal stem cells improves endometrium thickness in a rat model of thin endometrium. Reprod Sci. 2015; 22(2):181–188.doi:10.1177/1933719114537715.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Marzesco AM, Janich P, Wilsch-Brauninger M, Dubreuil V, Lan-genfeld K, Corbeil D, et al. Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J Cell Sci. 2005; 118(13):2849–2858.

    Article  CAS  PubMed  Google Scholar 

  11. Weigmann A, Corbeil D, Hellwig A, Huttner WB. Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc Natl Acad Sci USA. 1997;94(23):12425–12430.doi:10.1073/pnas.94.23.12425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Badala F, Nouri-mahdavi K, Raoof DA. NIH Public Access. Computer (Long Beach Calif). 2008;144(5):724–732. doi:10.1038/ jid.2014.371.

    Google Scholar 

  13. Sagrinati C, Netti GS, Mazzinghi B, et al. Isolation and charac-terization of multipotent progenitor cells from the Bowman’s capsule of adult human kidneys. J Am Soc Nephrol. 2006; 17(9): 2443–2456. doi:10.1681/ASN.2006010089.

    Article  CAS  PubMed  Google Scholar 

  14. Fargeas CA. Prominin-1 (CD133): new insights on stem & cancer stem cell. Adv Exp Med Biol. 2013;777:25-40. doi: 10.1007/978-1-4614-5894-4.

    Article  CAS  PubMed  Google Scholar 

  15. Arndt K, Grinenko T, Mende N, Reichert D, Portz M, Ripich T. CD 133 is a modi fi er of hematopoietic progenitor frequencies but is dispensable for the maintenance of mouse hematopoietic stem cells. Pnas. 2013;110(14):5582–5587. doi:10.1073/pnas.1215438110/-/DCSupplemental. http://www.pnas.org/cgi/doi/10.1073/pnas.1215438110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shimizu T. Changes of messenger RNA expression of angiogenic factors and related receptors during follicular development in filts. Biol Reprod. 2002;67(6):1846–1852. doi:10.1095/biolreprod.102.006734.

    Article  CAS  PubMed  Google Scholar 

  17. Onda T, Honmou O, Harada K, Houkin K, Kocsis JD. Therapeutic benefits by human mesenchymal stem cells (hMSCs) and Ang-1 gene-modified hMSCs after cerebral ischemia. J Cereb Blood Flow Metab. 2008;28(2):329–340. doi:10.1038/sj.jcbfm.9600527.Therapeutic.

    Article  CAS  PubMed  Google Scholar 

  18. Connelly KM, Bogdanffy MS. Evaluation of proliferating cell nuclear antigen (PCNA) as an endogenous marker of cell proliferation in rat liver: a dual-stain comparison with 5-bromo-2’-deoxyuridine. J Histochem Cytochem. 1993; 41(1):1–6.

    Article  Google Scholar 

  19. Munoz-Elias G, Woodbury D, Black IB. Marrow stromal cells, mitosis, and neuronal differentiation: stem cell and precursor functions. Stem Cells. 2003;21(4):437–448. doi: 10.1634/stem-cells.21-4-437.

    Article  PubMed  Google Scholar 

  20. Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol. 1999;181(1):67–73. doi:10.1002/(sici)1097-4652(199910) 181:1<67: aid-jcp7>3.0.co;2-c.

    Article  CAS  PubMed  Google Scholar 

  21. Fu X, He Y, Xie C, Liu W. Bone marrow mesenchymal stem cell transplantation improves ovarian function and structure in rats with chemotherapy-induced ovarian damage. Cytotherapy. 2008;10(4):353–363.doi:10.1080/14653240802035926.

    Article  CAS  PubMed  Google Scholar 

  22. Zarrow MX, Tochim JM, McCarthy JL, Sanborn RC. Experimental Endocrinology: A Sourcebook of Basic Techniques.. Academic Press; 1964. http://www.sciencedirect.com/science/book/9780123955661. Accessed March 9, 2017.

    Google Scholar 

  23. Fang B, Shi M, Liao L, Yang S, Liu Y, Zhao RC. Systemic infusion of FLK1(+) mesenchymal stem cells ameliorate carbon tetrachloride-induced liver fibrosis in mice. Transplantation. 2004;78(1):83–88. doi:00007890-200407150-00014 [pii].

    Article  CAS  PubMed  Google Scholar 

  24. Leite MC, Galland F, Brolese G, et al. A simple, sensitive and widely applicable ELISA for S100B: methodological features of the measurement of this glial protein. J Neurosci Methods. 2008; 169(1):93–99. doi:10.1016/j.jneumeth.2007.11.021.

    Article  CAS  PubMed  Google Scholar 

  25. S. Kim Suvarna, Christopher Layton JDB. Bancroft’s Theory and Practice of Histological Techniques. 7th Edition; 1989;53:160. doi:10.1017/CBO9781107415324.004.[AQ Please provide publisher details for Ref. 25.]

    Google Scholar 

  26. Almasry SM, Eldomiaty MA, Elfayomy AK, Habib FA. Expres-sion pattern of tumor necrosis factor alpha in placentae of idiopathic fetal growth restriction. J Mol Histol. 2012;43(3):253–261. doi:10.1007/sl0735-012-9410-6.

    Article  CAS  PubMed  Google Scholar 

  27. Nagori CB, Panchal SY, Patel H. Endometrial regeneration using autologous adult stem cells followed by conception by in vitro fertilization in a patient of severe Asherman’s syndrome. J Hum Reprod Sci. 2011;4(1):43–48. doi: 10.4103/0974-1208.82360.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Snegovskikh V, Mutlu L, Massasa E, Taylor HS. Identification of putative fallopian tube stem cells. Reprod Sci. 2014;21(12): 1460–1464. doi:10.1177/1933719114553448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Auersperg N. The origin of ovarian cancers-hypotheses and con-troversies. Front Biosci (Schol Ed). 2013;5:709-719. http://www.ncbi.nlm.nih.gov/pubmed/23277080.

    Article  Google Scholar 

  30. Kuhn E, Kurman RJ, Sehdev AS, Shih IeM. Ki-67 labeling index as an adjunct in the diagnosis of serous tubal intraepithelial carcinoma. Int J Gynecol Pathol. 2012;31(5):416–422. doi:10.1097/ PGP.ObO 13e31824cbeb4.Ki-67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cho KS, Park HY, Roh HJ, Bravo DT, Hwang PH, Nayak JV. Human ethmoid sinus mucosa: a promising novel tissue source of mesenchymal progenitor cells. Stem Cell Res Ther. 2014;5(1):15. doi:10.1186/scrt404.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gargett CE, Masuda H. Adult stem cells in the endometrium. Mol Hum Reprod. 2010;16(11):818-834. doi:10.1093/molehr/ gaq061.

    Article  CAS  PubMed  Google Scholar 

  33. Marynka-Kalmani K, Treves S, Yafee M, et al. The lamina propria of adult human oral mucosa harbors a novel stem cell population. Stem Cells. 2010;28(5):984–995. doi:10.1002/ stem.425.

    Article  CAS  PubMed  Google Scholar 

  34. Salamonsen LA. Tissue injury and repair in the female human reproductive tract. Reproduction. 2003;125:301-311. doi:10. 1530/rep.0.1250301.

    Article  CAS  PubMed  Google Scholar 

  35. Indumathi S, Harikrishnan R, Rajkumar JS, Sudarsanam D, Dhanasekaran M. Prospective biomarkers of stem cells of human endometrium and fallopian tube compared with bone marrow. Cell Tissue Res. 2013;352(3):537–549. doi:10.1007/s00441-013-1582-1.

    Article  CAS  PubMed  Google Scholar 

  36. Shin SY, Lee JY, Lee E, et al. Protective effect of vascular endothelial growth factor (VEGF) in frozen-thawed granulosa cells is mediated by inhibition of apoptosis. Eur J Obstet Gynecol Reprod Biol. 2006;125(2):233–238. doi:10.1016/j.ejogrb.2005. 10.027.

    Article  CAS  PubMed  Google Scholar 

  37. Shyu WC. Intracerebral peripheral blood stem cell (CD34+) implantation induces neuroplasticity by enhancing betal integrin-mediated angiogenesis in chronic stroke rats. JNeurosci. 2006;26(13):3444–3453. doi: 10.1523/JNEUROSCI.5165-05. 2006.

    Article  CAS  Google Scholar 

  38. Qin Z, Bai Z, Sun Y, Niu X, Xiao W. PCNA-Ub polyubiquitination inhibits cell proliferation and induces cell-cycle checkpoints. Cell Cycle. 2016;15(24): 1–12. doi:10.1080/15384101.2016. 1245247.

    Article  Google Scholar 

  39. Nicolay NH, Ruhle A, Perez RL, et al. Mesenchymal stem cells are sensitive to bleomycin treatment. Sci Rep. 2016;6(May): 26645. doi:10.1038/srep26645.

  40. Xu M, Uemura R, Dai Y, Wang Y, Pasha Z, Ashraf M. In vitro and in vivo effects of bone marrow stem cells on cardiac structure and function. J Mol Cell Cardiol. 2007;42(2):441–448. doi:10. 1016/j.bbi.2008.05.010.

    Article  CAS  PubMed  Google Scholar 

  41. Liang W, Lu C, Li J, Yin JQ, Zhao RC. p73alpha regulates the sensitivity of bone marrow mesenchymal stem cells to DNA dam-age agents. Toxicology. 2010;270(1):49–56. doi:10.1016/j.tox. 2010.01.011.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amr K. Elfayomy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almasry, S.M., Elfayomy, A.K. & El-Sherbiny, M.H. Regeneration of the Fallopian Tube Mucosa Using Bone Marrow Mesenchymal Stem Cell Transplantation After Induced Chemical Injury in a Rat Model. Reprod. Sci. 25, 773–781 (2018). https://doi.org/10.1177/1933719117725824

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719117725824

Keywords

Navigation