Skip to main content

Advertisement

Log in

Progressive Evaluation of Apoptosis, Proliferation, and Angiogenesis in Fresh Rat Ovarian Autografts Under Remote Ischemic Preconditioning

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

This study evaluated the remote ischemic preconditioning (R-IPC) early and late repercussion on fresh ovarian transplants, aiming to assess a probable protective effect in ovarian follicular pool. Sixty Wistar EPM-1 rats were used, divided in 2 study groups: ovarian transplantation (Tx) and Tx + R-IPC, submitted to ovary transplant with or without R-IPC, respectively. These groups were subdivided according to the date for euthanasia: 4th, 7th, 14th, 21st, and 30th days of the postoperatory period. Morphology, morphometry, neoangiogenesis (vascular endothelial growth factor [VEGF]), proliferative activity (Ki-67), and apoptosis (cleaved caspase-3) were evaluated. Remote ischemic preconditioning was performed in the common iliac artery. Fresh autologous ovarian tissue was implanted integrally in the retroperitoneum. All animals showed resumption of estrous phase after ovary transplantation. Remote ischemic preconditioning attenuated the lesions progressively from the 7th day, with greater number of the immature follicles (14 days, P < .05), but didn’t affect mature follicles and corpora lutea (P > .05). Immunohistochemical analyzes, taken as a whole, show that R-IPC benefic effect is more evident in the later periods of evaluation, when a greater proliferative activity (14, 21, and 30 days, P < .05) and lesser cell apoptotic activity (21 and 30 days, P < .05). The VEGF expression was similar in all times (P > .05). Remote ischemic preconditioning could have a benefic effect in the progressive evaluation of freshly grafted ovarian, especially on the latest phases of the posttransplant period. The 14th day was a landmark in the recuperation of the graft. Further investigations are necessary to determine the role of R-IPC in this scenario and its effect in frozen-thawed ovarian tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oktay K, Oktem O. Ovarian cryopreservation and transplantation for fertility preservation for medical indications: report of an ongoing experience. Fertil Steril. 2010;93(3):762–768.

    Article  PubMed  Google Scholar 

  2. Donnez J, Dolmans MM, Pellicer A, et al. Restoration of ovarian activity and pregnancy after transplantation of cryopreserved ovarian tissue: a review of 60 cases of reimplantation. Fertil Steril. 2013;99(6):1503–1513.

    Article  PubMed  Google Scholar 

  3. Loren AW, Mangu PB, Beck LN, et al; American Society of Clinical Oncology. Fertility preservation for patients with cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol. 2013;31(19):2500–2510.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sonmezer M, Oktay K. Orthotopic and heterotopic ovarian tissue transplantation. Best Pract Res Clin Obstet Gynaecol. 2010;24(1): 113–126.

    Article  PubMed  Google Scholar 

  5. Kolp LA, Hubayter Z. Autotransplantation of cryopreserved ovarian tissue: a procedure with promise, risks, and a need for a registry. Fertil Steril. 2011;95(6):1879–1886.

    Article  PubMed  Google Scholar 

  6. Bedaiwy MA, El-Nashar SA, El Saman AM, et al. Reproductive outcome after transplantation of ovarian tissue: a systematic review. Hum Reprod. 2008;23(12):2709–2717.

    Article  PubMed  Google Scholar 

  7. Nugent D, Newton H, Gallivan L, Gosden RG. Protective effect of vitamin E on ischaemia-reperfusion injury in ovarian grafts. J Reprod Fertil. 1998;114(2):341–346.

    Article  CAS  PubMed  Google Scholar 

  8. Israely T, Nevo N, Harmelin A, Neeman M, Tsafriri A. Reducing ischaemic damage in rodent ovarian xenografts transplanted into granulation tissue. Hum Reprod. 2006;21(6):1368–1379.

    Article  PubMed  Google Scholar 

  9. Oktay K, Buyuk E. Ovarian transplantation in humans: indications, techniques and the risk of reseeding cancer. Eur J Obstet Gynecol Reprod Biol. 2004;113(suppl 1):s45–s47.

    Article  PubMed  Google Scholar 

  10. Donnez J, Squifflet J, Dolmans MM, Martinez-Madrid B, Jadoul P, Langendonckt A. Orthotopic transplantation of fresh ovarian cortex: a report of two cases. Fertil Steril. 2005;84(4): 1018.e1–3.

    Article  PubMed  Google Scholar 

  11. Sanchéz M, Alamá P, Gadea B, Soares SR, Simón C, Pellicer A. Fresh human orthotopic ovarian transplantation: long-term results. Hum Reprod. 2007;22(3):786–791.

    Article  PubMed  Google Scholar 

  12. Dissen GA, Lara HE, Fahrenbach WH, Costa ME, Ojeda SR. Immature rat ovaries become revascularized rapidly after auto-transplantation and show a gonadotropin-dependent increase in angiogenic factor gene expression. Endocrinology. 1994;134(3): 1146–1154.

    Article  CAS  PubMed  Google Scholar 

  13. Liu J, Elst J, Broecke R, Dhont M. Early massive follicle loss and apoptosis in heterotopically grafted newborn mouse ovaries. Hum Reprod. 2002;17(3):605–611.

    Article  PubMed  Google Scholar 

  14. Risvanli A, Timurkan H, Akpolat N, Gulacti I, Ulakoglu E. A study of ovarian autotransplantation without vascular a pedicle in rats. J Assist Reprod Genet. 2006;23(11–12):401–406.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Oktay K, Newton H, Gosden RG. Transplantation of cryopreserved human ovarian tissue results in follicle growth initiation in SCID mice. Fertil Steril. 2000;73(3):599–603.

    Article  CAS  PubMed  Google Scholar 

  16. Yang HY, Cox SL, Jenkin G, Findlay J, Trouson A, Shaw J. Graft site and gonadotrophin stimulation influences the number and quality of oocytes from murine ovarian tissue grafts. Reproduction. 2006;131(5):851–859.

    Article  CAS  PubMed  Google Scholar 

  17. Kim SS, Yang HW, Kang HG, et al. Quantitative assessment of ischemic tissue damage in ovarian cortical tissue with or without antioxidant (ascorbic acid) treatment. Fertil Steril. 2004;82(3): 679–685.

    Article  CAS  PubMed  Google Scholar 

  18. Konstantinov IE, Arab S, Li J, et al. The remote ischemic preconditioning stimulus modifies gene expression in mouse myocardium. J Thorac Cardiovasc Surg. 2005;130(5):1326–1332.

    Article  CAS  PubMed  Google Scholar 

  19. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74(5):1124–1136.

    Article  CAS  PubMed  Google Scholar 

  20. Ambros JT, Herrero-Fresneda I, Borau OG, Boira JM. Ischemic preconditioning in solid organ transplantation: from experimental to clinics. Transpl Int. 2007;20(3):219–229.

    Article  CAS  PubMed  Google Scholar 

  21. Pasupathy S, Homer-Vanniasinkam S. Ischaemic preconditioning protects against ischaemia/reperfusion injury: emerging concepts. Eur J Vasc Endovasc Surg. 2005;29(2):106–115.

    Article  CAS  PubMed  Google Scholar 

  22. Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P. Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation. 1993;87(3):893–899.

    Article  CAS  PubMed  Google Scholar 

  23. Liauw SK, Rubin BB, Lindsay TF, Romaschin AD, Walker PM. Sequential ischemia/reperfusion results in contralateral skeletal muscle salvage. Am J Physiol. 1996;270(4 pt 2): h1407–h1413.

    CAS  PubMed  Google Scholar 

  24. Kanoria S, Jalan R, Seifalian AM, Williams R, Davidson BR. Protocols and mechanisms for remote ischemic preconditioning: a novel method for reducing ischemia reperfusion injury. Transplantation. 2007;84(4):445–458.

    Article  PubMed  Google Scholar 

  25. Loukogeorgakis SP, Panagiotidou AT, Broadhead MW, Donald A, Deanfield JE, MacAllister RJ. Remote ischemic preconditioning provides early and late protection against endothelial ischemia-reperfusion injury in humans: role of the autonomic nervous system. J Am Coll Cardiol. 2005;46(3):450–456.

    Article  CAS  PubMed  Google Scholar 

  26. Lee W-Y, Lee S-M. Ischemic preconditioning protects post-ischemic oxidative damage to mitochondria in rat liver. Shock. 2005;24(4):370–375.

    Article  CAS  PubMed  Google Scholar 

  27. Kimura M, Ueda K, Goto C, et al. Repetition of ischemic preconditioning augments endothelium-dependent vasodilation in humans: role of endothelium-derived nitric oxide and endothelial progenitor cells. Arterioscler Thromb Vasc Biol. 2007;27(6): 1403–1410.

    Article  CAS  PubMed  Google Scholar 

  28. Damous LL, Silva SM, Simões RS, et al. Remote ischemic preconditioning on neovascularization and follicle viability on ovary autotransplantation in rats. Transplant Proc. 2008; 40(3):861–864.

    Article  CAS  PubMed  Google Scholar 

  29. Yang H, Lee HH, Lee HC, Ko DS, Kim SS. Assessment of vascular endothelial growth factor expression and apoptosis in the ovarian graft: can exogenous gonadotropin promote angiogenesis after ovarian transplantation? Fertil Steril. 2008;90(4 suppl): 1550–1558.

    Article  CAS  PubMed  Google Scholar 

  30. D’Acampora AJ, Tramonte R, Manoel FS, et al. Análise histológica da viabilidade do transplante autólogo de hemi-ovário em retroperitônio de ratos. Acta Cir Bras. 2004;19(4):318–326.

    Google Scholar 

  31. Barros FS, de Oliveira RM, Alves FM, Sampaio M, Geber S. Successful ovarian autotransplant with no vascular reanastomosis in rats. Transplantation. 2008;86(11):1628–1630.

    Article  PubMed  Google Scholar 

  32. Nisolle M, Casanas-Roux F, Qu J, Motta P, Donnez J. Histologic and ultrastructural evaluation of fresh and frozen-thawed human ovarian xenografts in nude mice. Fertil Steril. 2000;74(1): 122–129.

    Article  CAS  PubMed  Google Scholar 

  33. Schubert B, Canis M, Darcha C, Artonne C, Smitz J, Grizard G. Follicular growth and estradiol follow-up after subcutaneous xenografting of fresh and cryopreserved human ovarian tissue. Fertil Steril. 2008;89(6):1787–1794.

    Article  PubMed  Google Scholar 

  34. Ceschin AP, Biondo-Simões MLP, Thomaz BAC, Totsugui J. Avaliação hormonal indireta e estudo da preservação folicular em tecido ovariano autólogo transplantado para região inguinal em ratos. Acta Cir Bras. 2004;19(1):27–30.

    Article  Google Scholar 

  35. Damous LL, Silva SM, Carbonel AP, Simões RS, Simões MJ, Montero EF. Effect of remote ischemic preconditioning on rat estradiol serum levels and follicular development after ovarian transplantation. Transplant Proc. 2009;41(3):830–833.

    Article  CAS  PubMed  Google Scholar 

  36. Newton H, Aubard Y, Rutherford A, Sharma V, Gosden R. Low temperature storage and grafting of human ovarian tissue. Hum Reprod. 1996;11(7):1487–1491.

    Article  CAS  PubMed  Google Scholar 

  37. Baird DT, Webb R, Campbell BK, Harkness LM, Gosden RG. Long-term ovarian function in sheep after ovariectomy and transplantation of autografts stored at -196 C. Endocrinology. 1999;140(1):462–471.

    Article  CAS  PubMed  Google Scholar 

  38. Sahinkanat T, Ozkan KU, Tolun FI, Ciralik H, Imrek SS. The protective effect of ischemic preconditioning on rat testis. Reprod Biol Endocrinol. 2007;5:47.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hausenloy DJ, Yellon DM. Remote ischemic preconditioning: Underlying mechanisms and clinical application. Cardiovasc Res. 2008;79(3):377–386.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana Lamarão Damous.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damous, L.L., Silva, S.M.d., Carbonel, A.A.F. et al. Progressive Evaluation of Apoptosis, Proliferation, and Angiogenesis in Fresh Rat Ovarian Autografts Under Remote Ischemic Preconditioning. Reprod. Sci. 23, 803–811 (2016). https://doi.org/10.1177/1933719115620493

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719115620493

Keywords

Navigation