Skip to main content

Advertisement

Log in

Recurrent Miscarriage and Micro-RNA Among North Indian Women

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Micro-RNAs (miRNAs) regulate diverse cellular processes such as cell differentiation, proliferation and apoptosis. Mutation in miRNAs results in various pathological conditions such as inflammation, viral infections, neurodegeneration, autoimmunity, and so on. We have evaluated the association of miR-146aC > G (rs2910164), miR-149T > C (rs2292832), miR-196a2T > C (rs11614913), and miR-499A > G (rs3746444) among patients with recurrent miscarriage (RM) and controls from North India. All the 200 patients with RM reported to experience at least 3 unexplained miscarriages before 20th week of gestation. Three hundred fertile women with no history of RMs were taken as controls. Both patients and controls were genotyped by the polymerase chain reaction amplification followed by restriction fragment length polymorphism. Variant alleles and genotypes of miR-499 A > G (Single Nucleotide Polymorphism Database [dbSNP] ID rs3746444) were found to be significant risks associated with patients having RM (odds ratio [OR] = 1.98; 95% confidence interval [CI] = 1.40–2.81; P value = .0001) and controls (OR = 3.64; 95% CI = 1.33–9.94; P value = .0109). A significant susceptible effect was found at allelic level in miR-196aT > C (dbSNP ID rs11614913) and miR-499 A > G (dbSNP ID rs3746444).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O’Connell RM, Rao DS, Chaudhuri AA, Baltimore D. Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol. 2010;10(2):111–122.

    Article  Google Scholar 

  2. Wiesen JL, Tomasi TB. Dicer is regulated by cellular stresses and interferons. Mol Immunol. 2009;46(6):1222–1228.

    Article  CAS  Google Scholar 

  3. Chiu RW, Lo YM. Pregnancy-associated microRNAs in maternal plasma: a channel for fetal-maternal communication? Clin Chem. 2010;56(11):1656–1657.

    Article  CAS  Google Scholar 

  4. Kotlabova K, Doucha J, Hromadnikova I. Placental-specific microRNA in maternal circulation—identification of appropriate pregnancy-associated microRNAs with diagnostic potential. J Reprod Immunol. 2011;89(2):185–191.

    Article  CAS  Google Scholar 

  5. Su MT, Lin SH, Chen YC. Genetic association studies of angiogenesis- and vasoconstriction-related genes in women with recurrent pregnancy loss: a systematic review and meta-analysis. Hum Reprod Update. 2011;17(6):803–812.

    Article  CAS  Google Scholar 

  6. Ladomery MR, Maddocks DG, Wilson ID. MicroRNAs: their discovery, biogenesis, function and potential use as biomarkers in non-invasive prenatal diagnostics. Int J Mol Epidemiol Genet. 2011;2(3):253–260.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Morales-Prieto DM, Chaiwangyen W, Ospina-Prieto S, et al. MicroRNA expression profiles of trophoblastic cells. Placenta. 2012;33(9):725–734.

    Article  CAS  Google Scholar 

  8. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–233.

    Article  CAS  Google Scholar 

  9. Iwai N, Naraba H. Polymorphisms in human pre-miRNAs. Biochem Biophys Res Commun. 2005;331(4):1439–1444.

    Article  CAS  Google Scholar 

  10. Xu J, Hu Z, Xu Z, et al. Functional variant in microRNA-196a2 contributes to the susceptibility of congenital heart disease in a Chinese population. Hum Mutat. 2009;30(8):1231–1236.

    Article  CAS  Google Scholar 

  11. Ryan BM, Robles AI, Harris CC. Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer. 2010;10(6):389–402.

    Article  CAS  Google Scholar 

  12. Zhou B, Rao L, Peng Y, et al. Common genetic polymorphisms in pre-microRNAs were associated with increased risk of dilated cardiomyopathy. Clin Chim Acta. 2010;411(17–18):1287–1290.

    Article  CAS  Google Scholar 

  13. Hoffman AE, Zheng T, Yi C, et al. MicroRNA miR-196a-2 and breast cancer: a genetic and epigenetic association study and functional analysis. Cancer Res. 2009;69(14):5970–5977.

    Article  CAS  Google Scholar 

  14. Suzuki Y, Kim HW, Ashraf M, Haider Hkh. Diazoxide potentiates mesenchymal stem cell survival via NF-ĸB-dependent miR-146a expression by targeting Fas. Am J Physiol Heart Circ Physiol. 2010;299(4):H1077–H1082.

    Article  CAS  Google Scholar 

  15. Lin RJ, Lin YC, Yu AL. miR-149 induces apoptosis by inhibiting Akt1 and E2F1 in human cancer cells. Mol Carcinog. 2010;49(8):719–727.

    CAS  PubMed  Google Scholar 

  16. Kefas B, Godlewski J, Comeau L, et al. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is downregulated in glioblastoma. Cancer Res. 2008;68(10):3566–3572.

    Article  CAS  Google Scholar 

  17. Thum T, Catalucci D, Bauersachs J. MicroRNAs: novel regulators in cardiac development and disease. Cardiovasc Res. 2008; 79(4):562–570.

    Article  CAS  Google Scholar 

  18. Eisenberg I, Eran A, Nishino I, et al. Distinctive patterns of microRNA expression in primary muscular disorders. Proc Natl Acad Sci USA. 2007;104(43):17016–17021.

    Article  CAS  Google Scholar 

  19. Joglekar MV, Parekh VS, Hardikar AA. Islet-specific microRNAs in pancreas development, regeneration and diabetes. Indian J Exp Biol. 2011;49(6):401–408.

    CAS  PubMed  Google Scholar 

  20. Jeon YJ, Choi YS, Rah H, et al. Association study of microRNA polymorphisms with risk of idiopathic recurrent spontaneous abortion in Korean women. Gene. 2012;494(2):168–173.

    Article  CAS  Google Scholar 

  21. Fish JE, Srivastava D. MicroRNAs: opening a new vein in angiogenesis research. Sci Signal. 2009;2(52):pe1.

    Article  Google Scholar 

  22. Kotlabova K, Doucha J, Hromadnikova I. Placental-specific microRNA in maternal circulation-identification of appropriate pregnancy-associated microRNAs with diagnostic potential. J Reprod Immunol. 2011;89(2):185–191.

    Article  CAS  Google Scholar 

  23. Fluhr H, Wenig H, Spratte J, et al. Non-apoptotic Fas-induced regulation of cytokines in undifferentiated and decidualized human endometrial stromal cells depends on caspase-activity. Mol Hum Reprod. 2011;17(2):127–134.

    Article  CAS  Google Scholar 

  24. Carcagno AL, Marazita MC, Ogara MF, et al. E2F1-mediated upregulation of p19INK4d determines its periodic expression during cell cycle and regulates cellular proliferation. PLoS One. 2011;6(7):e21938.

    Article  CAS  Google Scholar 

  25. Fujino T, Yamazaki Y, Largaespada DA, et al. Inhibition of myeloid differentiation by Hoxa9, Hoxb8, and Meis homeobox genes. Exp Hematol. 2001;29(7):856–863.

    Article  CAS  Google Scholar 

  26. Murakami A, Ishida S, Thurlow J, et al. SOX6 binds CtBP2 to repress transcription from the Fgf-3 promoter. Nucleic Acids Res. 2001;29(7):3347–3355.

    Article  CAS  Google Scholar 

  27. Sluijter JP, van Mil A, van Vliet P, et al. MicroRNA-1 and -499 regulate differentiation and proliferation in human-derived cardiomyocyte progenitor cells. Arterioscler Thromb Vasc Biol. 2010;30(4):859–868.

    Article  CAS  Google Scholar 

  28. Kawasaki H, Taira K. MicroRNA-196 inhibits HOXB8 expression in myeloid differentiation of HL60 cells. Nucleic Acids Symp Ser (Oxf). 2004;(48):211–212.

    Article  Google Scholar 

  29. Makker A, Goel MM, Das V. PI3K-Akt-mTOR and MAPK signaling pathways in polycystic ovarian syndrome, uterine leiomyomas and endometriosis: an update. Gynecol Endocrinol. 2012;28(3):175–181.

    Article  CAS  Google Scholar 

  30. Vitiello D, Kodaman PH, Taylor HS. HOX genes in implantation. Semin Reprod Med. 2007;25(6):431–436.

    Article  CAS  Google Scholar 

  31. Hornstein E, Mansfield JH, Yekta S, et al. The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature. 2005;438(7068):671–674.

    Article  CAS  Google Scholar 

  32. Renthal NE, Chen CC, Williams KC, et al. MiR-200 family and targets, ZEB1 and ZEB2, modulate uterine quiescence and contractility during pregnancy and labor. Proc Natl Acad Sci USA. 2010;107(48):20828–20833.

    Article  CAS  Google Scholar 

  33. Fang Y, Kong B, Yang Q, et al. MDM2 309polymorphism is associated with missed abortion. Hum Reprod. 2009;24(6):1346–1349.

    Article  CAS  Google Scholar 

  34. Zhong H, Wang HR, Yang S, et al. Targeting Smad4 links microRNA-146a to the TGF-beta pathway during retinoid acid induction in acute promyelocytic leukemia cell line. Int J Hematol. 2010;92(1):129–135.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suraksha Agrawal PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parveen, F., Agrawal, S. Recurrent Miscarriage and Micro-RNA Among North Indian Women. Reprod. Sci. 22, 410–415 (2015). https://doi.org/10.1177/1933719114529376

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719114529376

Keywords

Navigation