Skip to main content
Log in

Mmu-microRNA-200a Overexpression Leads to Implantation Defect by Targeting Phosphatase and Tensin Homolog in Mouse Uterus

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Successful mouse embryo implantation requires a receptive uterus and an activated blastocyst. A large number of genes, cytokines, and other factors are involved in the process. MicroRNAs (miRNAs) regulate the expression of many genes, and previous studies have investigated the relationship between miRNA expression and embryo implantation. In this study, we show that mmu-microRNA-200a (mmu-miR-200a) is expressed in a spatiatemporal manner during implantation in mouse uterus and found that phosphatase and tensin homolog (PTEN), SON, and programmed cell death 4 (Pdcd4) are the target genes of mmu-miR-200a by bioinformatics analysis. In vitro gain and loss of function experiments confirm that PTEN, a critical gene for cell proliferation and apoptosis, is the target gene of mmu-miR-200a. Our experiments also show that injection of the uterine horn with mmu-miR-200a lentivirus leads to a decreased implantation rate. Collectively, our results suggest that mmu-miR-200a affects embryo implantation by regulating PTEN protein expression. Thus, clarifying the physiological functions of uterine miRNAs will help to elucidate the embryo implantation process and may even contribute to curing infertility and inventing new contraceptives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown JR, Sanseau P. A computational view of microRNAs and their targets. Drug Discov Today. 2005;10(8):595–601.

    Article  CAS  PubMed  Google Scholar 

  2. Nilsen TW. Mechanisms of microRNA-mediated gene regulation in animal cells. Trends Genet. 2007;23(5):243–249.

    Article  CAS  PubMed  Google Scholar 

  3. Du T, Zamore PD. microPrimer: the biogenesis and function of microRNA. Development. 2005;132(21):4645–4652.

    Article  CAS  PubMed  Google Scholar 

  4. Ouellet DL, Perron MP, Gobeil LA, Plante P, Provost P. MicroRNAs in gene regulation: when the smallest governs it all. J Biomed Biotechnol. 2006;2006(4):69616.

    PubMed  PubMed Central  Google Scholar 

  5. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–297.

    Article  CAS  PubMed  Google Scholar 

  6. Rodriguez A, Vigorito E, Clare S, et al. Requirement of bic/ microRNA-155 for normal immune function. Science. 2007; 316(5824):608–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhao Y, Ransom JF, Li A, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1–2. Cell. 2007;129(2):303–317.

    Article  CAS  PubMed  Google Scholar 

  8. Wang H, Dey SK. Roadmap to embryo implantation: clues from mouse models. Nat Rev Genet. 2006;7(3):185–199.

    Article  PubMed  CAS  Google Scholar 

  9. Dey SK, Lim H, Das SK, et al. Molecular cues to implantation. Endocr Rev. 2004;25(3):341–373.

    Article  CAS  PubMed  Google Scholar 

  10. Lee K, Jeong J, Kwak I, et al. Indian hedgehog is a major mediator of progesterone signaling in the mouse uterus. Nat Genet. 2006; 38(10): 1204–1209.

    Article  CAS  PubMed  Google Scholar 

  11. Lee KY, Jeong JW, Wang J, et al. Bmp2 is critical for the murine uterine decidual response. Mol Cell Biol. 2007;27(15):5468–5478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stewart CL, Kaspar P, Brunet LJ, et al. Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature. 1992;359(6390):76–79.

    Article  CAS  PubMed  Google Scholar 

  13. Daikoku T, Cha J, Sun X, et al. Conditional deletion of Msx homeobox genes in the uterus inhibits blastocyst implantation by altering uterine receptivity. Dev Cell. 2011;21(6):1014–1025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Surveyor GA, Gendler SJ, Pemberton L, et al. Expression and steroid hormonal control of Muc-1 in the mouse uterus. Endocrinology. 1995;136(8):3639–3647.

    Article  CAS  PubMed  Google Scholar 

  15. Paria BC, Huet-Hudson YM, Dey SK. Blastocyst’s state of activity determines the “window” of implantation in the receptive mouse uterus. Proc Natl Acad Sci USA. 1993;90(21): 10159–10162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cha J, Sun X, Dey SK. Mechanisms of implantation: strategies for successful pregnancy. Nat Med. 2012;18(12):1754–1767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Song H, Lim H, Paria BC, et al. Cytosolic phospholipase A2alpha is crucial [correction of A2alpha deficiency is crucial] for ‘on-time’ embryo implantation that directs subsequent development. Development. 2002;129(12):2879–2889.

    CAS  PubMed  Google Scholar 

  18. Ye X, Hama K, Contos JJ, et al. LPA3-mediated lysophosphatidic acid signalling in embryo implantation and spacing. Nature. 2005; 435(7038): 104–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dey SK. Reproductive biology: fatty link to fertility. Nature. 2005;435(7038):34–35.

    Article  CAS  PubMed  Google Scholar 

  20. Liu JL, Su RW, Yang ZM. Differential expression profiles of mRNAs, miRNAs and proteins during embryo implantation. Front Biosci (Schol Ed). 2011;3:1511–1519.

    Article  Google Scholar 

  21. Su RW, Lei W, Liu JL, et al. The integrative analysis of microRNA and mRNA expression in mouse uterus under delayed implantation and activation. PLoS One. 2010;5(11):e15513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chakrabarty A, Tranguch S, Daikoku T, Jensen K, Furneaux H, Dey SK. MicroRNA regulation of cyclooxygenase-2 during embryo implantation. Proc Natl Acad Sci USA. 2007;104(38):15144–15149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hu SJ, Ren G, Liu JL, et al. MicroRNA expression and regulation in mouse uterus during embryo implantation. J Biol Chem. 2008; 283(34):23473–23484.

    Article  CAS  PubMed  Google Scholar 

  24. Pan Q, Chegini N. MicroRNA signature and regulatory functions in the endometrium during normal and disease states. Semin Reprod Med. 2008;26(6):479–493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hiroki E, Akahira J, Suzuki F, et al. Changes in microRNA expression levels correlate with clinicopathological features and prognoses in endometrial serous adenocarcinomas. Cancer Sci. 2010;101(1):241–249.

    Article  CAS  PubMed  Google Scholar 

  26. Ohlsson Teague EM, Van der Hoek KH, Van der Hoek MB, et al. MicroRNA-regulated pathways associated with endometriosis. Mol Endocrinol. 2009;23(2):265–275.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Gibbons DL, Lin W, Creighton CJ, et al. Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes Dev. 2009;23(18):2140–2151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Park NJ, Zhou H, Elashoff D, et al. Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res. 2009;15(17):5473–5477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xia H, Ng SS, Jiang S, et al. miR-200a-mediated downregulation of ZEB2 and CTNNB1 differentially inhibits nasopharyngeal carcinoma cell growth, migration and invasion. Biochem Biophys Res Commun. 2010;391(1):535–541.

    Article  CAS  PubMed  Google Scholar 

  30. Dykxhoorn DM, Wu Y, Xie H, et al. miR-200 enhances mouse breast cancer cell colonization to form distant metastases. PLoS One. 2009;4(9):e7181.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008;110(1):13–21.

    Article  CAS  PubMed  Google Scholar 

  32. Nam EJ, Yoon H, Kim SW, et al. MicroRNA expression profiles in serous ovarian carcinoma. Clin Cancer Res. 2008;14(9):2690–2695.

    Article  CAS  PubMed  Google Scholar 

  33. Roy BC, Kohno T, Iwakawa R, et al. Involvement of LKB1 in epithelial-mesenchymal transition (EMT) of human lung cancer cells. Lung Cancer. 2010;70(2):136–145.

    Article  PubMed  Google Scholar 

  34. Wang G, Kwan BC, Lai FM, et al. Intrarenal expression of miRNAs in patients with hypertensive nephrosclerosis. Am J Hypertens. 2010;23(1):78–84.

    Article  PubMed  CAS  Google Scholar 

  35. Wang G, Kwan BC, Lai FM, Chow KM, Kam-Tao Li P, Szeto CC. Expression of microRNAs in the urinary sediment of patients with IgA nephropathy. Dis Markers. 2010;28(2):79–86.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hu X, Macdonald DM, Huettner PC, et al. A miR-200 microRNA cluster as prognostic marker in advanced ovarian cancer. Gynecol Oncol. 2009;114(3):457–464.

    Article  CAS  PubMed  Google Scholar 

  37. Qin X, Yan L, Zhao X, Li C, Fu Y. microRNA-21 overexpression contributes to cell proliferation by targeting PTEN in endometrioid endometrial cancer. Oncol Lett. 2012;4(6):1290–1296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Meng F, Henson R, Lang M, et al. Involvement of human microRNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology. 2006;130(7):2113–2129.

    Article  CAS  PubMed  Google Scholar 

  39. Zaman MS, Thamminana S, Shahryari V, et al. Inhibition of PTEN gene expression by oncogenic miR-23b-3p in renal cancer. PLoS One. 2012;7(11):e50203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen C, Ridzon DA, Broomer AJ, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005; 33(20):e179.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Megraw M, Sethupathy P, Corda B, Hatzigeorgiou AG. miRGen: a database for the study of animal microRNA genomic organization and function. Nucleic Acids Res. 2007;35(Database issue): D149–D155.

    Article  CAS  PubMed  Google Scholar 

  42. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20.

    Article  CAS  PubMed  Google Scholar 

  43. Krek A, Grun D, Poy MN, et al. Combinatorial microRNA target predictions. Nat Genet. 2005;37(5):495–500.

    Article  CAS  PubMed  Google Scholar 

  44. Illera MJ, Cullinan E, Gui Y, Yuan L, Beyler SA, Lessey BA. Blockade of the alpha(v)beta(3) integrin adversely affects implantation in the mouse. Biol Reprod. 2000;62(5):1285–1290.

    Article  CAS  PubMed  Google Scholar 

  45. Tsai NP, Bi J, Loh HH, Wei LN. Netrin-1 signaling regulates de novo protein synthesis of kappa opioid receptor by facilitating polysomal partition of its mRNA. J Neurosci. 2006;26(38):9743–9749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Song L, Tuan RS. MicroRNAs and cell differentiation in mammalian development. Birth Defects Res C Embryo Today. 2006; 78(2):140–149.

    Article  CAS  PubMed  Google Scholar 

  47. Bentwich I, Avniel A, Karov Y, et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet. 2005;37(7):766–770.

    Article  CAS  PubMed  Google Scholar 

  48. Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E. Phylogenetic shadowing and computational identification of human microRNA genes. Cell. 2005;120(1):21–24.

    Article  CAS  PubMed  Google Scholar 

  49. Xie X, Lu J, Kulbokas EJ, et al. Systematic discovery of regulatory motifs in human promoters and 3’ UTRs by comparison of several mammals. Nature. 2005;434(7031):338–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang N, Li X, Wu CW, et al. microRNA-7 is a novel inhibitor of YY1 contributing to colorectal tumorigenesis [published on December 3, 2012]. Oncogene. 2012.

  51. van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science. 2007;316(5824):575–579.

    Article  PubMed  CAS  Google Scholar 

  52. Tan J, Raja S, Davis MK, Tawfik O, Dey SK, Das SK. Evidence for coordinated interaction of cyclin D3 with p21 and cdk6 in directing the development of uterine stromal cell decidualization and polyploidy during implantation. Mech Dev. 2002;111(1–2): 99–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sun X, Zhang L, Xie H, et al. Kruppel-like factor 5 (KLF5) is critical for conferring uterine receptivity to implantation. Proc Natl Acad Sci USA. 2012;109(4):1145–1150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lim H, Paria BC, Das SK, et al. Multiple female reproductive failures in cyclooxygenase 2-deficient mice. Cell. 1997;91(2):197–208.

    Article  CAS  PubMed  Google Scholar 

  55. Garcia-Cao I, Song MS, Hobbs RM, et al. Systemic elevation of PTEN induces a tumor-suppressive metabolic state. Cell. 2012;149(1):49–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tashiro H, Blazes MS, Wu R, et al. Mutations in PTEN are frequent in endometrial carcinoma but rare in other common gynecological malignancies. Cancer Res. 1997;57(18):3935–3940.

    CAS  PubMed  Google Scholar 

  57. Chen XL, Ma HL, Xie Y, Yang R, Wei SL. Expression of phosphatase and tensin homolog deleted on chromosome ten in mouse endometrium and its effect during blastocyst implantation. Sheng Li Xue Bao. 2008;60(1):119–124.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue-Qing Liu MD or Ying-Xiong Wang MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, LJ., He, JL., Yang, DH. et al. Mmu-microRNA-200a Overexpression Leads to Implantation Defect by Targeting Phosphatase and Tensin Homolog in Mouse Uterus. Reprod. Sci. 20, 1518–1528 (2013). https://doi.org/10.1177/1933719113488453

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719113488453

Keywords

Navigation