Skip to main content

Advertisement

Log in

The Effects of Extracellular Calcium-Sensing Receptor Ligands on the Contractility of Pregnant Human Myometrium In Vitro

Reproductive Sciences Aims and scope Submit manuscript

Abstract

Ligands for extracellular calcium-sensing (CaS) receptors inhibit oxytocin-induced contractions of the rat’s uterus. In this study, we investigated whether the CaS receptor ligands calindol, cinacalcet, and calhex 231 have similar effects on pregnant human myometrium. We compared their effects to those of the calcium-channel blocker nifedipine. In conventional concentration–effect experiments, both the mean contractile force (MCF) and the maximum amplitude of contractions induced by 1 nmol/L oxytocin were inhibited by nifedipine. Calindol and cinacalcet were ineffective as inhibitors, while calhex-231 produced partial inhibition. When single 10 μmol/L doses were applied calhex-231 produced a slowly developing inhibition, reducing the MCF to 38%, and amplitude to 34%, of vehicle controls after 1 hour. In similar experiments, calindol was ineffective while cinacalcet weakly inhibited only the amplitude. Immunohistochemistry revealed sparse expression of CaS receptors in pregnant human myometrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Brown EM, Gamba G, Riccardi D, et al. Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature. 1993;366(6455):575–580.

    Article  CAS  Google Scholar 

  2. Brown EM, MacLeod RJ. Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev. 2001;81(1):239–297.

    Article  CAS  Google Scholar 

  3. Weston AH, Absi M, Ward DT, et al. Evidence in favor of a calcium-sensing receptor in arterial endothelial cells: studies with calindol and Calhex 231. Circ Res. 2005;97(4):391–398.

    Article  CAS  Google Scholar 

  4. Weston AH, Absi M, Harno E, et al. The expression and function of Ca2+-sensing receptors in rat mesenteric artery; comparative studies using a model of type II diabetes. Br J Pharmacol. 2008;154(3):652–662.

    Article  CAS  Google Scholar 

  5. Smajilovic S, Sheykhzade M, Holmegard HN, Haunso S, Tfelt-Hansen J. Calcimimetic, AMG 073, induces relaxation on isolated rat aorta. Vascul Pharmacol. 2007;47(4):222–228.

    Article  CAS  Google Scholar 

  6. Petrel C, Kessler A, Maslah F, et al. Modeling and mutagenesis of the binding site of Calhex 231, a novel negative allosteric modulator of the extracellular Ca2+-sensing receptor. J Biol Chem. 2003;278(49):49487–49494.

    Article  CAS  Google Scholar 

  7. Pistilli MJ, Petrik JJ, Holloway AC, Crankshaw DJ. Immunohistochemical and functional studies on calcium-sensing receptors in rat uterine smooth muscle. Clin Exp Pharmacol Physiol. 2012; 39(1):37–42.

    Article  CAS  Google Scholar 

  8. Morrison JJ, Ashford ML, Khan RN, Smith SK. The effects of potassium channel openers on isolated pregnant human myometrium before and after the onset of labor: potential for tocolysis. Am J Obstet Gynecol. 1993;169(5):1277–1285.

    Article  CAS  Google Scholar 

  9. Houlihan DD, Dennedy MC, Morrison JJ. Polyamine effects on human myometrial contractility. Am J Obstet Gynecol. 2002; 186(4):778–783.

    Article  CAS  Google Scholar 

  10. Olson DM, Christiaens I, Gracie S, Yamamoto Y, Mitchell BF. Emerging tocolytics: challenges in designing and testing drugs to delay preterm delivery and prolong pregnancy. Expert Opin Emerg Drugs. 2008;13(4):695–707.

    Article  CAS  Google Scholar 

  11. Forman A, Andersson KE, Persson CG, Ulmsten U. Relaxant effects of nifedipine on isolated, human myometrium. Acta Pharmacol Toxicol (Copenh). 1979;45(2):81–86.

    Article  CAS  Google Scholar 

  12. Moynihan AT, Smith TJ, Morrison JJ. The relaxant effect of nifedipine in human uterine smooth muscle and the BKCa channel. Am J Obstet Gynecol. 2008;198(2):237–238.

    Article  Google Scholar 

  13. Crankshaw DJ, Morrison JJ. Methodology and pharmacological analysis of effects of uterotonic compounds in human myometrium in vitro. Am J Obstet Gynecol. 2011;205(2):155.e1–155.e6.

    Article  Google Scholar 

  14. Crankshaw DJ. Pharmacological techniques for the in vitro study of the uterus. J Pharmacol Toxicol Methods. 2001;45(2):123–140.

    Article  CAS  Google Scholar 

  15. Fomin VP, Gibbs SG, Vanam R, Morimiya A, Hurd WW. Effect of magnesium sulfate on contractile force and intracellular calcium concentration in pregnant human myometrium. Am J Obstet Gynecol. 2006;194(5):1384–1390.

    Article  CAS  Google Scholar 

  16. Quinn SJ, Ye CP, Diaz R, et al. The Ca2+-sensing receptor: a target for polyamines. Am J Physiol. 1997;273(4 pt 1):C1315–C1323.

    Article  CAS  Google Scholar 

  17. Nemeth EF, Heaton WH, Miller M, et al. Pharmacodynamics of the type II calcimimetic compound cinacalcet HCl. J Pharmacol Exp Ther. 2004;308(2):627–635.

    Article  CAS  Google Scholar 

  18. Petrel C, Kessler A, Dauban P, Dodd RH, Rognan D, Ruat M. Positive and negative allosteric modulators of the Ca2+-sensing receptor interact within overlapping but not identical binding sites in the transmembrane domain. J Biol Chem. 2004;279(18):18990–18997.

    Article  CAS  Google Scholar 

  19. Thakore P, Ho WS. Vascular actions of calcimimetics: role of Ca2+ -sensing receptors versus Ca2+ influx through L-type Ca2+ channels. Br J Pharmacol. 2011;162(3):749–762.

    Article  CAS  Google Scholar 

  20. Chow JY, Estrema C, Orneles T, Dong X, Barrett KE, Dong H. Calcium-sensing receptor modulates extracellular Ca(2+) entry via TRPC-encoded receptor-operated channels in human aortic smooth muscle cells. Am J Physiol Cell Physiol. 2011;301(2):C461-C468.

    Article  CAS  Google Scholar 

  21. Stepanchick A, McKenna J, McGovern O, Huang Y, Breitwieser GE. Calcium sensing receptor mutations implicated in pancreatitis and idiopathic epilepsy syndrome disrupt an arginine-rich retention motif. Cell Physiol Biochem. 2010;26(3):363–374.

    Article  CAS  Google Scholar 

  22. San Gabriel A, Uneyama H, Maekawa T, Torii K. The calcium-sensing receptor in taste tissue. Biochem Biophys Res Commun. 2009;378(3):414–418.

    Article  CAS  Google Scholar 

  23. Nemeth EF. Calcimimetic and calcilytic drugs: just for parathyroid cells? Cell Calcium. 2004;35(3):283–289.

    Article  CAS  Google Scholar 

  24. Bruce JI, Yang X, Ferguson CJ, et al. Molecular and functional identification of a Ca2+ (polyvalent cation)-sensing receptor in rat pancreas. J Biol Chem. 1999;274(29):20561–20568.

    Article  CAS  Google Scholar 

  25. Miyoshi H, Yamaoka K, Garfield RE, Ohama K. Identification of a non-selective cation channel current in myometrial cells isolated from pregnant rats. Pflugers Arch. 2004;447(4):457–464.

    Article  CAS  Google Scholar 

  26. Molostvov G, James S, Fletcher S, et al. Extracellular calcium-sensing receptor is functionally expressed in human artery. Am J Physiol Renal Physiol. 2007;293(3):F946-F955.

    Article  CAS  Google Scholar 

  27. Tfelt-Hansen J, Hansen JL, Smajilovic S, Terwilliger EF, Haunso S, Sheikh SP. Calcium receptor is functionally expressed in rat neonatal ventricular cardiomyocytes. Am J Physiol Heart Circ Physiol. 2006;290(3):H1165-H1171.

    Article  CAS  Google Scholar 

  28. Yamaguchi T, Chattopadhyay N, Kifor O, et al. Expression of extracellular calcium-sensing receptor in human osteoblastic MG-63 cell line. Am J Physiol Cell Physiol. 2001;280(2):C382-C393.

    Article  CAS  Google Scholar 

  29. Li GW, Wang QS, Hao JH, et al. The functional expression of extracellular calcium-sensing receptor in rat pulmonary artery smooth muscle cells. J Biomed Sci. 2011;18:16.

    Article  Google Scholar 

  30. Tu CL, Chang W, Bikle DD. The role of the calcium sensing receptor in regulating intracellular calcium handling in human epidermal keratinocytes. J Invest Dermatol. 2007;127(5):1074–1083.

    Article  CAS  Google Scholar 

  31. Tu CL, Chang W, Bikle DD. The extracellular calcium-sensing receptor is required for calcium-induced differentiation in human keratinocytes. J Biol Chem. 2001;276(44):41079–41085.

    Article  CAS  Google Scholar 

  32. Chang W, Tu C, Chen TH, et al. Expression and signal transduction of calcium-sensing receptors in cartilage and bone. Endocrinology. 1999;140(12):5883–5893.

    Article  CAS  Google Scholar 

  33. Bradbury RA, Cropley J, Kifor O, et al. Localization of the extracellular Ca2+ -sensing receptor in the human placenta. Placenta. 2002;23(2–3):192–200.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis J. Crankshaw PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crankshaw, D.J., Pistilli, M.J., O’Brien, Y.M. et al. The Effects of Extracellular Calcium-Sensing Receptor Ligands on the Contractility of Pregnant Human Myometrium In Vitro. Reprod. Sci. 20, 882–890 (2013). https://doi.org/10.1177/1933719112468949

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719112468949

Keywords

Navigation