Skip to main content

Advertisement

Log in

Molecular Analysis of Cell Type-Specific Gene Expression Profile During Mouse Spermatogenesis by Laser Microdissection and qRT-PCR

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Laser microdissection (LMD) is a selective cell isolation technique that enables the separation of desired homogenous cell subpopulations from complex tissues such as the testes under direct microscopic visualization. The LMD accompanied by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) represents an indispensable tool in quantifying messenger RNA (mRNA) expression among defined cell populations. Gene expression is temporally and spatially regulated at 3 sequential phases of mitotic, meiotic, and postmeiotic stages of spermatogenesis. The present study demonstrates a short modified LMD protocol based upon hematoxylin and eosin (H&E) staining. Stage-specific LMD success was validated by the use of mRNA profiling of “marker genes” which are conserved across species and are known to be differentially expressed during spermatogenesis. Magea4, Hspa2, Cox6b2, Tnp1, Prm1, and Prm2 are used to differentiate among the microdissected cell populations, namely spermatogonia (group I), spermatocytes (group II), round and condensing spermatids (group III), and elongated and condensed spermatids (group IV), respectively. The LMD combined with qRT-PCR is further extended to assess the cell stage-specific distribution of selected stress response genes such as Hsp90aa1, Gpx4, Ucp2, Sod1, and Sod2. The germ cell-specific mRNA profiles are suitably complemented by Western blot of the LMD samples, immunohistochemistry, and confocal localization of the corresponding proteins. The current study suggests that LMD can successfully isolate cell subpopulations from the complex tissues of the testes; and establish cell stage-specific basal expression patterns of selected stress response genes and proteins. It is our hypothesis that the baseline expression of stress response genes will differ by cell stage to create discrete stage-specific vulnerabilities to reproductive toxicants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kerr JB. Macro, micro, and molecular research on spermatogenesis: the quest to understand its control. Micro Res Tech. 1995;32: 364–384.

    Article  CAS  Google Scholar 

  2. Bonner RF, Emmert-Buck M, Cole K, et al. Laser capture microdissection: molecular analysis of tissue. Science. 1997;278(5342): 1481–1483.

    Article  CAS  PubMed  Google Scholar 

  3. Fend F, Raffeld M. Laser capture microdissection in pathology. J Clin Pathol. 2000;53(9):666–672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kohda Y, Murakami H, Moe OW, Star RA. Analysis of segmental renal gene expression by laser capture microdissection. Kidney Int. 2000;57(1):321–331.

    Article  CAS  PubMed  Google Scholar 

  5. Luo L, Salunga RC, Guo H, et al. Gene expression profiles of laser-captured adjacent neuronal subtypes. Nat Med. 1999;5(1): 117–122.

    Article  CAS  PubMed  Google Scholar 

  6. Sgroi DC, Teng S, Robinson G, LeVangie R, Hudson JR Jr, Elkahloun AG. In vivo gene expression profile analysis of human breast cancer progression. Cancer Res. 1999;59(22): 5656–5661.

    CAS  PubMed  Google Scholar 

  7. Sluka P, O’Donnell L, Stanton PG. Stage-specific expression of genes associated with rat spermatogenesis: characterization by laser-capture microdissection and real time polymerase chain reaction. Biol Reprod. 2002;67(3):820–828.

    Article  CAS  PubMed  Google Scholar 

  8. Sluka P, O’Donnell L, MacLachlan RI, Stanton PG. Application of laser-capture microdissection to analysis of gene expression in the testis. Prog Histochem Cytochem. 2008;42(4):173–201.

    Article  CAS  PubMed  Google Scholar 

  9. Espina V, Milia J, Wu G, Cowherd S, Liotta LA. Laser capture microdissection. Methods Mol Biol. 2006;319:213–229.

    Article  CAS  PubMed  Google Scholar 

  10. Leblond CP, Clermont Y. Spermiogenesis of rat, mouse, hamster and guinea pig as revealed by the periodic acid-fuchsin sulfurous acid technique. Am J Anat. 1952;90(2):167–215.

    Article  CAS  PubMed  Google Scholar 

  11. Russell LD, Ettlin RA, SinhaHikim APS, et al. Histological and Histopathological Evaluation of the Testis. Clearwater, FL: Cache River Press; 1990.

    Google Scholar 

  12. Hess R, de Franca L. Spermatogenesis and cycle of the seminiferous epithelium. In: Cheng CY, ed. Molecular Mechanisms in Spermatogenesis. Austin, TX: Landes Bioscience/Springer Science; 2008;1–15.

    Google Scholar 

  13. Eddy EM. Male germ cell gene expression. Recent Prog Horm Res. 2002;57:103–128.

    Article  CAS  PubMed  Google Scholar 

  14. Hemendinger RA, Gores P, Blacksten L, Harley V, Halberstadt C. Identification of a specific Sertoli cell marker, Sox9, for use in transplantation. Cell Transplant. 2002;11(6):499–505.

    Article  CAS  PubMed  Google Scholar 

  15. Teerds KJ, de Boer-Brouwer M, Dorrington JH, Balvers M, Ivell R. Identification of markers for precursor and leydig cell differentiation in the adult rat testis following ethane dimethyl sulphonate administration. Biol Reprod. 1999;60(6):1437–1445.

    Article  CAS  PubMed  Google Scholar 

  16. Kokk K, Veräjänkorva E, Laato M, Wu XK, Tapfer H, Pöllänen P. Expression of insulin receptor substrates 1–3, glucose transporters GLUT-1-4, signal regulatory protein 1α, phosphatidylinositol 3-kinase and protein kinase B at the protein level in the human testis. Anat Sci Int. 2005;80(2):91–96.

    Article  CAS  PubMed  Google Scholar 

  17. Bustin SA, Benes V, Garson JA, et al. The MIQE Guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611–622.

    Article  CAS  PubMed  Google Scholar 

  18. Braun Robert E. The Mammalian Reproductive Genetics Database. Bar Harbor, ME: The Jackson Laboratory; 2010. http://mrg.gs.washington.edu. Accessed August 31, 2010.

  19. Shima JE, McLean DJ, McCarrey JR, Griswold MD. The murine testicular transcriptome: characterizing gene expression in the testis during the progression of spermatogenesis. Biol Reprod. 2004;71(1):319–330.

    Article  CAS  PubMed  Google Scholar 

  20. Guo R, Yu Z, Guan J, et al. Stage-specific and tissue-specific expression characteristics of differentially expressed genes during mouse spermatogenesis. Mol Reprod Dev. 2004;67:264–272.

    Article  CAS  PubMed  Google Scholar 

  21. Erickson HS, Albert PS, Gillespie JW, et al. Quantitative RT-PCR gene expression analysis of laser microdissected tissue samples. Nat Protoc. 2009;4(6):902–922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vinas J, Piferrer F. Stage-specific gene expression during fish spermatogenesis as determined by laser-capture microdissection and quantitative-PCR in sea bass (Dicentrarchus labrax) gonads. Biol Reprod. 2008;79(4):738–747.

    Article  CAS  PubMed  Google Scholar 

  23. Suarez-Quian CA, Goldstein SR, Bonner RF. Laser capture microdissection: a new tool for the study of spermatogenesis. J Androl. 2000;21(5):601–608.

    CAS  PubMed  Google Scholar 

  24. Weber JE, Russell LD, Wong V, Peterson RN. Three dimensional reconstruction of a rat stage V Sertoli cell. II. Morphometry of Sertoli-Sertoli and Sertoli-germ cell relationships. Am J Anat. 1983;167(2):163–179.

    Article  CAS  PubMed  Google Scholar 

  25. Guten IV, Torres B, Bols PRJ. Flow cytometry purification of mouse meiotic cells. J Vis Exp. 2011;50:e2602. doi:10.3891/2602(2011).

  26. Namekawa SH, Park PJ, Zhang LF, et al. Post meiotic sex chromatin in the male germ line of mice. Current Biol. 2006;16:660–667.

    Article  CAS  Google Scholar 

  27. Takahashi K, Shichijo S, Noguchi M, Hirohata M, Itoh K. Identification of MAGE-1 and MAGE-4 proteins in spermatogonia and primary spermatocytes of testis. Cancer Res. 1995;55(16): 3478–3482.

    CAS  PubMed  Google Scholar 

  28. Chambost H, Van Baren N, Brasseur F, et al. Expression of gene MAGE-A4 in Reed-Sternberg cells. Blood. 2000;95(11): 3530–3533.

    CAS  PubMed  Google Scholar 

  29. Allen JW, Dix DJ, Collins BW, et al. HSP70-2 is part of the synaptonemal complex in mouse and hamster spermatocytes. Chromosoma. 1996;104(6):414–421.

    Article  CAS  PubMed  Google Scholar 

  30. Zakeri ZF, Wolgemuth DJ, Hunt CR. Identification and sequence analysis of a new member of the mouse HSP70 gene family and characterization of its unique cellular and developmental pattern of expression in the male germ line. Mol Cell Biol. 1988;8: 2925–2932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Son W, Hwang S, Han C, Lee JH, Kim S, Kim YC. Specific expression of heat shock protein HspA2 in human male germ cells. Mol Hum Reprod. 1999;5(12):1122–1126.

    Article  CAS  PubMed  Google Scholar 

  32. Sasaki T, Marcon E, McQuire T, et al. Bat3 deficiency accelerates the degradation of Hsp70-2/HspA2 during spermatogenesis. J Cell Biol. 2008;182:449–458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hüttemann M, Kadenbach B, Grossman LI. Mammalian subunit IV isoforms of cytochrome c oxidase. Gene. 2001;267(1): 111–123.

    Article  PubMed  Google Scholar 

  34. Mali P, Kaipia A, Kangasniemi M, et al. Stage-specific expression of nucleoprotein mRNAs during rat and mouse spermiogenesis. Reprod Fertil Dev. 1989;1(4):369–382.

    Article  CAS  PubMed  Google Scholar 

  35. Brewer L, Corzett M, Balhorn R. Condensation of DNA by spermatid basic nuclear proteins. J Biol Chem. 2002;277:3885–3890.

    Article  Google Scholar 

  36. Zhao M, Shirley CR, Hayashi S, et al. Transition nuclear proteins are required for normal chromatin condensation and functional sperm development. Genesis. 2004;38:200–213.

    Article  CAS  PubMed  Google Scholar 

  37. Sutovsky P, Manandhar G. Mammalian spermatogenesis and sperm structure: anatomical and compartmental analysis. In: De jonge C, Barrett C, eds. The Sperm Cell: Production, Maturation, Fertilization, Regeneration. Cambridge, UK: The Cambridge Press; 2006:1–30.

  38. Aitken RJ, Baker MA. Oxidative stress, sperm survival and fertility control. Mol Cell Endocrinol. 2006;250(1–2):66–69.

    Article  CAS  PubMed  Google Scholar 

  39. Aguilar-Mahecha A, Hales BF, Robaire B. Expression of stress response genes in germ cells during spermatogenesis. Biol Reprod. 2001;65(1):119–127.

    Article  CAS  PubMed  Google Scholar 

  40. Hales DB, Allen JA, Shankara T, et al. Mitochondrial function in Leydig cell steroidogenesis. Ann N Y Acad Sci. 2005;1061: 120–134.

    Article  CAS  PubMed  Google Scholar 

  41. Aitken RJ, Roman SD. Antioxidant systems and oxidative stress in the testes. Adv Exp Med Biol. 2008;636:154–171.

    Article  CAS  PubMed  Google Scholar 

  42. Grad I, Cederroth CR, Walicki J, et al. The molecular chaperone HSP90A is required for meiotic progression of spermatocytes beyond pachytene in the mouse. PLoS One. 2010;5:1–11.

    Article  CAS  Google Scholar 

  43. Yufu Y, Nishimura J, Nawata H. High constitutive expression of heat shock protein 90α in human acute leukemia cells. Leuk Res. 1992;16(6–7):597–605.

    Article  CAS  PubMed  Google Scholar 

  44. Biggiogera M, Fakan S, Leser G, Martin TE, Gordon J. Immunoelectron microscopic visualization of ribonucleoproteins in the chromatoid body of mouse spermatids. Mol Reprod Dev. 1990; 26(2):150–158.

    Article  CAS  PubMed  Google Scholar 

  45. Simmons SO, Fan CY Ramabhadran. Cellular stress pathway systems as a sentinel in toxicological screening. Toxicol Sci. 2009; 111(2):202–225.

    Article  CAS  PubMed  Google Scholar 

  46. Pushpa-Rekha TR, Burdsall AL, Oleksa LM, Chisolm GM, Driscoll DM. Rat phospholipid-hydroperoxide glutathione peroxidase. cDNA cloning and identification of multiple transcription and translation start sites. J Biol Chem. 1995;270(45): 26993–26999.

    Article  CAS  PubMed  Google Scholar 

  47. Nam SY, Fujisawa M, Kim JS, Kurohmaru M, Hayashi Y. Expression pattern of phospholipid hydroperoxide glutathione peroxidase messenger ribonucleic acid in mouse testis. Biol Reprod. 1998;58(5):1272–1276.

    Article  CAS  PubMed  Google Scholar 

  48. Puglisi R, Bevilacqua A, Carlomagno G, et al. Mice over expressing the mitochondrial phospholipid hydroperoxide glutathione peroxidase in male germ cells show abnormal spermatogenesis and reduced fertility. Endocrinology. 2007;148:4302–4309.

    Article  CAS  PubMed  Google Scholar 

  49. Imai H, Hakkaku N, Iwamoto N, et al.. Depletion of selenoprotein GPx4 in spermatocytes causes male infertility in mice. J Biol Chem. 2009;284:32522–32532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Flachs P, Sponarova J, Kopecky P, et al. Mitochondrial uncoupling protein 2 gene transcript levels are elevated in maturating erythroid cells. FEBS Lett. 2007;581(6):1093–1097.

    Article  CAS  PubMed  Google Scholar 

  51. Mattiasson G, Sullivan PG. The emerging functions of ucp2 in health, disease, and therapeutics. Antioxid Redox Signal. 2006; 8(1–2):1–38.

    Article  CAS  Google Scholar 

  52. Fleury C, Neverova M, Collins S, et al. Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinaemia. Nat Genet. 1997;15(3):269–272.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, Shang Y, Liao S, et al.. Uncoupling protein 2 protects testicular germ cells from hyperthermia-induced apoptosis. Biochem Biophys Res Commun. 2007;360(2):327–332.

    Article  CAS  PubMed  Google Scholar 

  54. Lasso JL, Noiles EE, Alvarez JG, et al. Mechanism of superoxide dismutase loss from human sperm cells during cryopreservation. J Androl. 1994;15:255–265.

    CAS  PubMed  Google Scholar 

  55. Gu W, Morales C, Hecht NB. In male mouse germ cells, copperzinc superoxide dismutase utilizes alternative promoters that produce multiple transcripts with different translation potential. J Biol Chem. 1995;270(1):236–243.

    Article  CAS  PubMed  Google Scholar 

  56. Gu W, Hecht NB. Developmental expression of glutathione peroxidase, catalase, and manganese superoxide dismutase mRNAs during spermatogenesis in the mouse. J Androl. 1996;17(3):256–262.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelle H. Moley MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esakky, P., Hansen, D.A., Drury, A.M. et al. Molecular Analysis of Cell Type-Specific Gene Expression Profile During Mouse Spermatogenesis by Laser Microdissection and qRT-PCR. Reprod. Sci. 20, 238–252 (2013). https://doi.org/10.1177/1933719112452939

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719112452939

Keywords