Skip to main content
Log in

Assisted Reproductive Technologies (ART) With Baboons Generate Live Offspring: A Nonhuman Primate Model for ART and Reproductive Sciences

  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Human reproduction has benefited significantly by investigating nonhuman primate (NHP) models, especially rhesus macaques. To expand the Old World monkey species available for human reproductive studies, we present protocols in baboons, our closest Old World primate relatives, for assisted reproductive technologies (ART) leading to live born offspring. Baboons complement rhesus by confirming or modifying observations generated in humans often obtained by the study of clinically discarded specimens donated by anonymous infertility patient couples. Here, baboon ART protocols, including oocyte collection, in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI), preimplantation development to blastocyst stage, and embryo transfer techniques are described. With baboon ART methodologies in place, motility during baboon fertilization was investigated by time-lapse video microscopy (TLVM). The first ART baboons produced by ICSI, a pair of male twins, were delivered naturally at 165 days postgestation. Genetic testing of these twins confirmed their ART parental origins and demonstrated that they are unrelated fraternal twins not identicals. These results have implications for ART outcomes, embryonic stem cell (ESC) derivation, and reproductive sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basatemur E, Sutcliffe A. Follow-up of children born after ART. Placenta. 2008;29(suppl B):135–140.

    Article  PubMed  Google Scholar 

  2. Steptoe PC, Edwards RG. Birth after the reimplantation of a human embryo. Lancet. 1978;2(8085):366.

    Article  CAS  PubMed  Google Scholar 

  3. Steptoe P, Edwards R. Pregnancy in an infertile patient after transfer of an embryo fertilised in vitro. Br Med J (Clin Res Ed). 1983;286(6374):1351–1352.

    Article  CAS  Google Scholar 

  4. Steptoe PC, Edwards RG, Walters DE. Observations on 767 clinical pregnancies and 500 births after human in-vitro fertilization. Hum Reprod. 1986;1(2):89–94.

    Article  CAS  PubMed  Google Scholar 

  5. Edwards RG, Steptoe PC, Purdy JM. Establishing full-term human pregnancies using cleaving embryos grown in vitro. Br J Obstet Gynaecol. 1980;87(9):737–756.

    Article  CAS  PubMed  Google Scholar 

  6. Van Blerkom J. Sperm centrosome dysfunction: a possible new class of male factor infertility in the human. Mol Hum Reprod. 1996;2(5):349–354.

    Article  PubMed  Google Scholar 

  7. Simerly C, Nowak G, de Lanerolle P, Schatten G. Differential expression and functions of cortical myosin IIA and IIB isotypes during meiotic maturation, fertilization, and mitosis in mouse oocytes and embryos. Mol Biol Cell. 1998;9(9):2509–2525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Simerly C, Wu GJ, Zoran S, et al. The paternal inheritance of the centrosome, the cell’s microtubule-organizing center, in humans, and the implications for infertility. Nat Med. 1995;1(1):47–52.

    Article  PubMed  Google Scholar 

  9. Wolf DP. Assisted reproductive technologies in rhesus macaques. Reprod Biol Endocrinol. 2004;2:37.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bavister BD. How animal embryo research led to the first documented human IVF. Reprod Biomed Online. 2002;4(suppl 1): 24–29.

    Article  PubMed  Google Scholar 

  11. Rogers J, Mahaney MC, Witte SM, et al. A genetic linkage map of the baboon (Papio hamadryas) genome based on human microsatellite polymorphisms. Genomics. 2000;67(3):237–247.

    Article  CAS  PubMed  Google Scholar 

  12. Stewart CB, Disotell TR. Primate evolution—in and out of Africa. Curr Biol. 1998;8(16):R582–R588.

    Article  CAS  PubMed  Google Scholar 

  13. Havill LM, Mahaney MC, Czerwinski SA, Carey KD, Rice K, Rogers J. Bone mineral density reference standards in adult baboons (Papio hamadryas) by sex and age. Bone. 2003;33(6):877–878.

    Article  CAS  PubMed  Google Scholar 

  14. Vinson A, Mahaney MC, Cox LA, Rogers J, VandeBerg JL, Rainwater DL. A pleiotropic QTL on 2p influences serum Lp-PLA2 activity and LDL cholesterol concentration in a baboon model for the genetics of atherosclerosis risk factors. Atherosclerosis. 2008;196(2):667–673.

    Article  CAS  PubMed  Google Scholar 

  15. Cox LA, Birnbaum S, Mahaney MC, Rainwater DL, Williams JT, VandeBerg JL. Identification of promoter variants in baboon endothelial lipase that regulate high-density lipoprotein cholesterol levels. Circulation. 2007;116(10):1185–1195.

    Article  CAS  PubMed  Google Scholar 

  16. Tejero ME, Voruganti VS, Rodriguez-Sanchez IP, et al. Genetics of variation in adiponectin in pedigreed baboons: evidence for pleiotropic effects on adipocyte volume and serum adiponectin. Heredity. 2008;100(4):382–389.

    Article  CAS  PubMed  Google Scholar 

  17. Rogers J, Hixson JE. Baboons as an animal model for genetic studies of common human disease. Am J Hum Genet. 1997;61(3):489–493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rietzler M, Bittner M, Kolanus W, Schuster A, Holzmann B. The human WD repeat protein WAIT-1 specifically interacts with the cytoplasmic tails of beta7-integrins. J Biol Chem. 1998;273(42): 27459–27466.

    Article  CAS  PubMed  Google Scholar 

  19. Havill LM, Mahaney MC, Cox LA, Morin PA, Joslyn G, Rogers J. A quantitative trait locus for normal variation in forearm bone mineral density in pedigreed baboons maps to the ortholog of human chromosome 11q. J Clin Endocrinol Metab. 2005;90(6):3638–3645.

    Article  CAS  PubMed  Google Scholar 

  20. Hlusko LJ, Do N, Mahaney MC. Genetic correlations between mandibular molar cusp areas in baboons. Am J Phys Anthropol. 2007;132(3):445–454.

    Article  PubMed  Google Scholar 

  21. Chai D, Cuneo S, Falconer H, Mwenda JM, D’Hooghe T. Olive baboon (Papio anubis anubis) as a model for intrauterine research. J Med Primatol. 2007;36(6):365–369.

    Article  CAS  PubMed  Google Scholar 

  22. D’Hooghe TM, Bambra CS, Raeymaekers BM, De Jonge I, Lauweryns JM, Koninckx PR. Intrapelvic injection of menstrual endometrium causes endometriosis in baboons (Papio cynocephalus and Papio anubis). Am J Obstet Gynecol. 1995;173(1):125–134.

    Article  PubMed  Google Scholar 

  23. D’Hooghe TM, Debrock S, Kyama CM, et al. Baboon model for fundamental and preclinical research in endometriosis. Gynecol Obstet Invest. 2004;57(1):43–46.

    PubMed  Google Scholar 

  24. D’Hooghe TM, Kyama CM, Chai D, et al. Nonhuman primate models for translational research in endometriosis. Reprod Sci. 2009;16(2):152–161.

    Article  PubMed  Google Scholar 

  25. D’Hooghe TM, Spiessens C, Chai DC, Mwethera PG, Makokha AO, Mwenda JM. Ovarian stimulation, egg aspiration, in vitro fertilization and embryo transfer in the baboon (Papio anubis): a pilot project at the Institute of Primate Research, Nairobi, Kenya. Gynecol Obstet Invest. 2004; 57(1):23–26.

    PubMed  Google Scholar 

  26. Fazleabas AT. Physiology and pathology of implantation in the human and nonhuman primate. Semin Reprod Med. 2007;25(6): 405–409.

    Article  PubMed  Google Scholar 

  27. Fazleabas AT, Strakova Z. Endometrial function: cell specific changes in the uterine environment. Mol Cell Endocrinol. 2002;186(2):143–147.

    Article  CAS  PubMed  Google Scholar 

  28. Inder T, Neil J, Yoder B, Rees S. Non-human primate models of neonatal brain injury. Semin Perinatol. 2004;28(6):396–404.

    Article  PubMed  Google Scholar 

  29. Redl H, Bahrami S. Large animal models: baboons for trauma, shock, and sepsis studies. Shock. 2005;24(suppl 1):88–93.

    Article  PubMed  Google Scholar 

  30. VandeBerg JF, Williams-Blangero S, Tardif SD. The Baboon in Biomedical Research Series: Developments in Primatology: Progress and Prospects. New York, NY: Springer; 2008.

    Google Scholar 

  31. Hewitson L. Primate models for assisted reproductive technologies. Reproduction. 2004;128(3):293–299.

    Article  CAS  PubMed  Google Scholar 

  32. Nyachieo A, Spiessens C, Chai DC, Kiulia NM, Mwenda JM, D’Hooghe TM. Baboon serum is superior to human or bovine serum albumin for baboon sperm capacitation and zona binding. J Med Primatol. 2009;38(2):145–150.

    Article  CAS  PubMed  Google Scholar 

  33. Nyachieo A, Spiessens C, Chai DC, Mwenda JM, D’Hooghe TM. Menstrual cycle synchronization, ovarian stimulation, and in vitro fertilization in olive baboons (Papio anubis): a prospective randomized study. Fertil Steril. 2009;91(2):602–610.

    Article  CAS  PubMed  Google Scholar 

  34. Nyachieo A, Spiessens C, Mwenda JM, Debrock S, D’Hooghe TM. Improving ovarian stimulation protocols for IVF in baboons: lessons from humans and rhesus monkeys. Anim Reprod Sci. 2009;110(3–4):187–206.

    Article  PubMed  Google Scholar 

  35. Li C, Yang Y, Gu J, Ma Y, Jin Y. Derivation and transcriptional profiling analysis of pluripotent stem cell lines from rat blastocysts. Cell Res. 2009;19(2):173–186.

    Article  CAS  PubMed  Google Scholar 

  36. Li S, Li Y, Du W, et al. Aberrant gene expression in organs of bovine clones that die within two days after birth. Biol Reprod. 2005;72(2):258–265.

    Article  CAS  PubMed  Google Scholar 

  37. Lim D, Bowdin SC, Tee L, et al. Clinical and molecular genetic features of Beckwith-Wiedemann syndrome associated with assisted reproductive technologies. Hum Reprod. 2009;24(3): 741–747.

    Article  PubMed  Google Scholar 

  38. Kobayashi H, Sato A, Otsu E, et al. Aberrant DNA methylation of imprinted loci in sperm from oligospermic patients. Hum Mol Genet. 2007;16(21):2542–2551.

    Article  CAS  PubMed  Google Scholar 

  39. Rivera RM, Stein P, Weaver JR, Mager J, Schultz RM, Bartolomei MS. Manipulations of mouse embryos prior to implantation result in aberrant expression of imprinted genes on day 9.5 of development. Hum Mol Genet. 2008;17(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  40. Plusa B, Frankenberg S, Chalmers A, et al. Downregulation of Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse embryo. J Cell Sci. 2005;118(pt 3): 505–515.

    Article  CAS  PubMed  Google Scholar 

  41. Plusa B, Hadjantonakis AK, Gray D, et al. The first cleavage of the mouse zygote predicts the blastocyst axis. Nature. 2005;434(7031):391–395.

    Article  CAS  PubMed  Google Scholar 

  42. Motosugi N, Dietrich JE, Polanski Z, Solter D, Hiiragi T. Space asymmetry directs preferential sperm entry in the absence of polarity in the mouse oocyte. PLoS Biol. 2006;4(5):el35.

    Article  CAS  Google Scholar 

  43. Gardner RL. The axis of polarity of the mouse blastocyst is specified before blastulation and independently of the zona pellucida. Hum Reprod. 2007;22(3):798–806.

    Article  CAS  PubMed  Google Scholar 

  44. Bischoff M, Parfitt DE, Zernicka-Goetz M. Formation of the embryonic-abembryonic axis of the mouse blastocyst: relationships between orientation of early cleavage divisions and pattern of symmetric/asymmetric divisions. Development. 2008;135(5):953–962.

    Article  CAS  PubMed  Google Scholar 

  45. Kloc M, Jaglarz M, Dougherty M, Stewart MD, Nel-Themaat L, Bilinski S. Mouse early oocytes are transiently polar: three-dimensional and ultrastructural analysis. Exp Cell Res. 2008;314(17):3245–3254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. St John JC, Moffatt O, D’Souza N. Aberrant heteroplasmic transmission of mtDNA in cloned pigs arising from double nuclear transfer. Mol Reprod Dev. 2005;72(4):450–460.

    Article  CAS  Google Scholar 

  47. Yu Z, Raabe T, Hecht NB. MicroRNA Mirnl22a reduces expression of the posttranscriptionally regulated germ cell transition protein 2 (Tnp2) messenger RNA (mRNA) by mRNA cleavage. Biol Reprod. 2005;73(3):427–433.

    Article  CAS  PubMed  Google Scholar 

  48. Kimura Y, Yanagimachi R. Development of normal mice from oocytes injected with secondary spermatocyte nuclei. Biol Reprod. 1995;53(4):855–862.

    Article  CAS  PubMed  Google Scholar 

  49. Ogura A, Matsuda J, Yanagimachi R. Birth of normal young after electrofusion of mouse oocytes with round spermatids. Proc Natl Acad Sci U S A. 1994;91(16):7460–7462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Khalili MA, Aflatoonian A, Zavos PM. Intracytoplasmic injection using spermatids and subsequent pregnancies: round versus elongated spermatids. J Assist Reprod Genet. 2002;19(2):84–86.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hewitson L, Dominko T, Takahashi D, et al. Unique checkpoints during the first cell cycle of fertilization after intracytoplasmic sperm injection in rhesus monkeys. Nat Med. 1999;5(4):431–433.

    Article  CAS  PubMed  Google Scholar 

  52. Hewitson L, Martinovich C, Simerly C, Takahashi D, Schatten G. Rhesus offspring produced by intracytoplasmic injection of testicular sperm and elongated spermatids. Fertil Steril. 2002;77(4): 794–801.

    Article  PubMed  Google Scholar 

  53. Hewitson L, Simerly C, Dominko T, Schatten G. Cellular and molecular events after in vitro fertilization and intracytoplasmic sperm injection. Theriogenology. 2000;53(1):95–104.

    Article  CAS  PubMed  Google Scholar 

  54. Hewitson L, Takahashi D, Dominko T, Simerly C, Schatten G. Fertilization and embryo development to blastocysts after intracytoplasmic sperm injection in the rhesus monkey. Hum Reprod. 1998;13(12):3449–3455.

    Article  CAS  PubMed  Google Scholar 

  55. Gerris J, Van Royen E. Avoiding multiple pregnancies in ART: a plea for single embryo transfer. Hum Reprod. 2000; 15(9): 1884–1888.

    Article  CAS  PubMed  Google Scholar 

  56. Elster N. Less is more: the risks of multiple births. The Institute for Science, Law, and Technology Working Group on Reproductive Technology. Fertil Steril. 2000;74(4):617–623.

    Article  CAS  PubMed  Google Scholar 

  57. Khalaf Y, El-Toukhy T, Coomarasamy A, Kamal A, Bolton V, Braude P. Selective single blastocyst transfer reduces the multiple pregnancy rate and increases pregnancy rates: a pre- and postin-tervention study. BJOG. 2008;115(3):385–390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ahrens ET, Srinivas M, Capuano S, Simhan HN, Schatten GP. Magnetic resonance imaging of embryonic and fetal development in model systems. Methods Mol Med. 2006;124:87–101.

    PubMed  Google Scholar 

  59. Thomson JA, Kalishman J, Golos TG, et al. Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci U S A. 1995;92(17): 7844–7848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–1147.

    Article  CAS  PubMed  Google Scholar 

  61. Cibelli JB, Grant KA, Chapman KB, et al. Parthenogenetic stem cells in nonhuman primates. Science. 2002;295(5556):819.

    Article  CAS  PubMed  Google Scholar 

  62. Lin G, OuYang Q, Zhou X, et al. A highly homozygous and parthenogenetic human embryonic stem cell line derived from a one-pronuclear oocyte following in vitro fertilization procedure. Cell Res. 2007;17(12):999–1007.

    Article  CAS  PubMed  Google Scholar 

  63. Mai Q, Yu Y, Li T, et al. Derivation of human embryonic stem cell lines from parthenogenetic blastocysts. Cell Res. 2007; 17(12): 1008–1019.

    Article  CAS  PubMed  Google Scholar 

  64. Revazova ES, Turovets NA, Kochetkova OD, et al. Patient-specific stem cell lines derived from human parthenogenetic blastocysts: HLA homozygous stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells. 2007;9(3):432–449.

    Article  CAS  PubMed  Google Scholar 

  65. Byrne JA, Pedersen DA, Clepper LL, et al. Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature. 2007;450(7168):497–502.

    Article  CAS  PubMed  Google Scholar 

  66. Stojkovic M, Stojkovic P, Leary C, et al. Derivation of a human blastocyst after heterologous nuclear transfer to donated oocytes. Reprod Biomed Online. 2005;11(2):226–231.

    Article  PubMed  Google Scholar 

  67. French AJ, Adams CA, Anderson LS, Kitchen JR, Hughes MR, Wood SH. Development of human cloned blastocysts following somatic cell nuclear transfer with adult fibroblasts. Stem Cells. 2008;26(2):485–493.

    Article  CAS  PubMed  Google Scholar 

  68. Bowles EJ, Tecirlioglu RT, French AJ, Holland MK, St John JC. Mitochondrial DNA transmission and transcription after somatic cell fusion to one or more cytoplasts. Stem Cells. 2008;26(3):775–782.

    Article  CAS  PubMed  Google Scholar 

  69. Brons IG, Smithers LE, Trotter MW, et al. Derivation of pluripo-tent epiblast stem cells from mammalian embryos. Nature. 2007;448(7150):191–195.

    Article  CAS  PubMed  Google Scholar 

  70. Iannaccone PM, Jacob HJ. Rats!. Dis Model Mech. 2009;2(5-6): 206–210.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Banaszak S, Brudney A, Donnelly K, Chai D, Chwalisz K, Fazleabas AT. Modulation of the action of chorionic gonadotropin in the baboon (Papio anubis) uterus by a progesterone receptor antagonist (ZK 137. 316). Biol Reprod. 2000;63(3): 820–825.

    Article  CAS  PubMed  Google Scholar 

  72. Shaikh A, Shaikh S, Celaya C, Goldzieher J. Ovulation pattern in successive cycles in the baboon. Primates. 1982;23(4): 592–959.

    Article  Google Scholar 

  73. Shearer MH, Lucas AH, Anderson PW, et al. The baboon as a nonhuman primate model for assessing the effects of maternal immunization with Haemophilus influenzae type b polysaccharide vaccines. Infect Immunity. 1997;65(8):3267–3270.

    Article  CAS  Google Scholar 

  74. Zuckerman S, Parkes A. The Social Life of Monkeys and Apes. Proc Zool Soc. London, England: Kegan Paul, Trench, Trubner and Company; 1932:XII, 357.

  75. Hendrickx AG, Kraemer DC. Preimplantation stages of baboon embryos (Papio sp.). AnatRec. 1968; 162(1): 111–120.

    CAS  Google Scholar 

  76. Pope CE, Pope VZ, Beck LR. Development of baboon preimplantation embryos to post-implantation stages in vitro. Biol Reprod. 1982;27(4):915–923.

    Article  CAS  PubMed  Google Scholar 

  77. Stevens VC. Some reproductive studies in the baboon. Hum Reprod Update. 1997;3(6):533–540.

    Article  CAS  PubMed  Google Scholar 

  78. Bavister BD, Boatman DE, Leibfried L, Loose M, Vernon MW. Fertilization and cleavage of rhesus monkey oocytes in vitro. Biol Reprod. 1983;28(4):983–999.

    Article  CAS  PubMed  Google Scholar 

  79. Simerly CR, Navara CS, Castro CA, et al. Establishment and characterization of baboon embryonic stem cell lines: an old world primate model for regeneration and transplantation research. Stem Cell Res. 2009;2:178–187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Stouffer RL, Zelinski-Wooten MB. Overriding follicle selection in controlled ovarian stimulation protocols: quality vs quantity. Reprod Biol Endocrinol. 2004;2(1):32.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Davenport AT, Lees CJ, Green HL, Grant KA. Long-acting depot formulation of luprolide acetate as a method of hypothalamic down regulation for controlled ovarian hyperstimulation and oocyte production in Macaca fascicularis. Biol Reprod. 2003;68(6):2261–2266.

    Article  CAS  PubMed  Google Scholar 

  82. Nusser KD, Mitalipov S, Widmann A, Gerami-Naini B, Yeoman RR, Wolf DP. Developmental competence of oocytes after ICSI in the rhesus monkey. Hum Reprod. 2001;16(1):130–137.

    Article  CAS  PubMed  Google Scholar 

  83. Ng SC, Martelli P, Liow SL, Herbert S, Oh SH. Intracytoplasmic injection of frozen-thawed epididymal spermatozoa in a nonhuman primate model, the cynomolgus monkey (Macaca fascicularis). Theriogenology. 2002;58(7):1385–1397.

    Article  PubMed  Google Scholar 

  84. Simerly CR, Hecht NB, Goldberg E, Schatten G. Tracing the incorporation of the sperm tail in the mouse zygote and early embryo using an anti-testicular alpha-tubulin antibody. Dev Biol. 1993;158(2):536–548.

    Article  CAS  PubMed  Google Scholar 

  85. Simerly C, Zoran SS, Payne C, et al. Biparental inheritance of gamma-tubulin during human fertilization: molecular reconstitution of functional zygotic centrosomes in inseminated human oocytes and in cell-free extracts nucleated by human sperm. Mol Biol Cell. 1999;10(9):2955–2969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chan AW, Dominko T, Luetjens CM, et al. Clonal propagation of primate offspring by embryo splitting. Science. 2000;287(5451): 317–319.

    Article  CAS  PubMed  Google Scholar 

  87. Yang SH, Cheng PH, Banta H, et al. Towards a transgenic model of Huntington’s disease in a non-human primate. Nature. 2008;453(7197):921–924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tachibana M, Sparman M, Sritanaudomchai H, et al. Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature. 2009;461(7262):367–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tachibana M, Terada Y, Ogonuki N, et al. Functional assessment of centrosomes of spermatozoa and spermatids microinjected into rabbit oocytes. Mol Reprod Dev. 2009;76(3):270–277.

    Article  CAS  PubMed  Google Scholar 

  90. Dighe V, Clepper L, Pedersen D, et al. Heterozygous embryonic stem cell lines derived from nonhuman primate parthenotes. Stem Cells. 2008;26(3):756–766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rajesh D, Chinnasamy N, Mitalipov SM, et al. Differential requirements for hematopoietic commitment between human and rhesus embryonic stem cells. Stem Cells. 2007;25(2): 490–499.

    Article  CAS  PubMed  Google Scholar 

  92. Banerjee P, Fazleabas AT. Endometrial responses to embryonic signals in the primate. Int J Dev Biol. 2010;54(2–3): 295–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Braun SE, Johnson RP. Setting the stage for bench-to-bedside movement of anti-HIV RNA inhibitors-gene therapy for AIDS in macaques. Front Biosci. 2006;11:838–851.

    Article  CAS  PubMed  Google Scholar 

  94. Thomson JA, Marshall VS. Primate embryonic stem cells. Curr Top Dev Biol. 1998;38:133–165.

    Article  CAS  PubMed  Google Scholar 

  95. Boveri T. Zellen-studien: Uber die Natur der Centrosomen. Vol. IV. Jena, Germany: Fischer; 1901.

    Google Scholar 

  96. Hematti P, Obrtlikova P, Kaufman DS. Nonhuman primate embryonicstem cells as a preclinical model for hematopoietic and vascular repair. Exp Hematol. 2005;33(9):980–986.

    Article  CAS  PubMed  Google Scholar 

  97. Horvath JE, Willard HF. Primate comparative genomics: lemur biology and evolution. Trends Genet. 2007;23(4):173–182.

    Article  CAS  PubMed  Google Scholar 

  98. Bankiewicz KS, Sanchez-Pernaute R, Oiwa Y, Kohutnicka M, Cummins A, Eberling J. Preclinical models of Parkinson’s disease. Curr Protoc Neurosci. 2001; Chapter 9:Unit9.4.

  99. Williams JK, Baptista PM, Daunais JB, Szeliga KT, Friedman DP, Soker S. The effects of ethanol consumption on vasculogenesis potential in nonhuman primates. Alcohol Clin Exp Res. 2008;32(1):155–161.

    Article  CAS  PubMed  Google Scholar 

  100. Abee CR. Squirrel monkey (Saimiri spp.) research and resources. ILAR J. 2000;41(1):2–9.

    Article  CAS  PubMed  Google Scholar 

  101. Wilmut I, Taylor J. Stem cells: primates join the club. Nature. 2007;450(7169):485–486.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Schatten PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simerly, C.R., Castro, C.A., Jacoby, E. et al. Assisted Reproductive Technologies (ART) With Baboons Generate Live Offspring: A Nonhuman Primate Model for ART and Reproductive Sciences. Reprod. Sci. 17, 917–930 (2010). https://doi.org/10.1177/1933719110374114

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719110374114

Keywords

Navigation