Skip to main content
Log in

An Age-Adjusted Trend Test for the Tumor Incidence Rate for Single-Sacrifice Experiments

  • Published:
Drug information journal : DIJ / Drug Information Association Aims and scope Submit manuscript

Abstract

The nonparametric age-adjusted test proposed by Kodell and Ahn (1) for assessing doserelated trend with respect to the tumor incidence rate in animal experiments is extended from the case of multiple sacrifices to the case of a single (terminal) sacrifice. The tumor incidence rate is made identifiable for time intervals preceding the final time interval by assuming constant proportionality of the tumor prevalences in live and dead animals. Information on cause of death is not required. A Monte Carlo simulation study is conducted to assess size and power of the test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kodell RL, Ahn H. Age-adjusted trend test for the tumor incidence rate. Biometrics. 1997.

    Google Scholar 

  2. McKnight B, Crowley J. Tests for differences in tumor incidence based on animal carcinogenesis experiments. J. Am Stat Assoc. 1984;79:639–648.

    Article  Google Scholar 

  3. Peto R, Pike MC, Day NE, Gray RG, Lee PN, Parish S, Peto J, Richards S, Wahrendorf J. Guidelines for simple, sensitive significance tests for carcinogenic effects in long-term animal experiments. Annex to: Long-term and short-term screening assays for carcinogens: a critical appraisal. IARC Monographs, Supplement 2. Lyon, France: IARC;1980:311–426.

    Google Scholar 

  4. Hoel DG, Walburg HE. Statistical analysis of survival experiments. J Nat Cancer Inst. 1972;49:361–372.

    CAS  PubMed  Google Scholar 

  5. Dewanji A, Kalbfleisch JD. Nonparametric methods for survival/sacrifice experiments. Biometrics. 1986;42:325–341.

    Article  CAS  Google Scholar 

  6. Portier CJ, Dinse, GE. Semiparametric analysis of tumor incidence rates in survival/sacrifice experiments. Biometrics. 1987;43:107–114.

    Article  CAS  Google Scholar 

  7. Malani HM, Van Ryzin J. Comparison of two treatments in animal carcinogenicity experiments. J Am Stat Assoc. 1988;83:1171–1177.

    Article  Google Scholar 

  8. Williams PL, Portier CJ. Analytic expressions for maximum likelihood estimators in a nonparametric model of tumor incidence and death. Comm Stat—Theory Meth. 1992;21:711–732.

    Article  CAS  Google Scholar 

  9. Malani HM, Lu Y. Animal carcinogenicity experiments with and without serial sacrifice. Comm Stat—Theory Meth. 1993;22:1557–1584.

    Article  Google Scholar 

  10. Ahn H, Kodell RL. Estimation and testing of tumor incidence rates in experiments lacking cause-of-death data. Biometrical J. 1995;37:745–763.

    Article  Google Scholar 

  11. Kodell RL, Ahn H. Nonparametric trend test for the cumulative tumor incidence rate. Comm Stat—Theory Meth. 1996;25:1677–1692.

    Article  Google Scholar 

  12. Dinse GE. Constant risk differences in the analysis of animal tumorigenicity data. Biometrics. 1991;47:681–700.

    Article  CAS  Google Scholar 

  13. Lindsey JC, Ryan LM. A comparison of continuous- and discrete-time three-state models for rodent tumorigenicity experiments. Environ Health Perspect. 1994;102 (Suppl. 1), 9–17.

    Article  Google Scholar 

  14. IMSL. MATH/LIBRARY User’s Manual. FORTRAN Subroutines for Mathematical Applications. Houston, TX: IMSL, Inc., 1989.

    Google Scholar 

  15. Box MJ. A new method of constrained optimization and a comparison with other methods. Computer J. 1965;8:42–52.

    Article  Google Scholar 

  16. Nelder JA, Mead R. A simplex method for function maximization. Computer J. 1965;7:308.

    Article  Google Scholar 

  17. Richardson JA, Kuester JL. The Complex Method for constrained optimization (Algorithm 454). Comm ACM. 1973;16:487–489.

    Article  Google Scholar 

  18. Bailer AJ, Portier CJ. Effects of treatment-induced mortality and tumor-induced mortality on tests for carcinogenicity in small samples. Biometrics. 1988;44:417–431.

    Article  CAS  Google Scholar 

  19. Portier C, Hedges J, Hoel DG. Age-specific models of mortality and tumor onset for historical control animals in the National Toxicology Program’s carcinogenicity experiments. Cancer Res. 1986;46:4372–4378.

    CAS  PubMed  Google Scholar 

  20. Dinse GE. A comparison of tumour incidence analyses applicable in single-sacrifice animal experiments. Stat Med. 1994;13:689–708.

    Article  CAS  Google Scholar 

  21. Peto R, Peto J. Asymptotically efficient rank invariant test procedures (with discussion). J Roy Stat Soc A. 1972;135:185–207.

    Article  Google Scholar 

  22. Boldebuck DH, Heimann G, Neuhaus G. Analysing carcinogenicity assays without cause of death information. Drug InfJ. 1997;31.

  23. Mantel N. Evaluation of survival data and two new rank-order statistics arising in its consideration. Cancer Chemo Reports. 1966;50:163–170.

    CAS  Google Scholar 

  24. Tarone RE. Tests for trend in life table analysis. Biometrika. 1975;62:679–682.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kodell, R.L., Pearce, B.A., Turturro, A. et al. An Age-Adjusted Trend Test for the Tumor Incidence Rate for Single-Sacrifice Experiments. Ther Innov Regul Sci 31, 471–487 (1997). https://doi.org/10.1177/009286159703100218

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/009286159703100218

Key Words

Navigation