Skip to main content
Log in

Regulation of Matrix Metalloproteinases 2 and 9 Activities by Peroxynitrites in Term Placentas From Type 2 Diabetic Patients

  • Original Articles
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Matrix metalloproteinases (MMPs) are proteolytic enzymes related to a proinflammatory environment in several diseases, including diabetes, which can be activated by reactive nitrogen species. This work aimed to determine MMP-2 and MMP-9 activities and nitration in term placentas from type 2 diabetic patients and verify the hypothesis that peroxynitrites are positive regulators of placental MMP-2 and MMP-9 activities. For this purpose, term placentas from healthy and type 2 diabetic patients were analyzed for MMP-2 and MMP-9 levels and activities, protein nitration, and nitration of MMP-2 and MMP-9. Villous explants were cultured in the presence of peroxynitrites for further evaluation of MMP-2 and MMP-9 activities. We found that MMP-2 and MMP-9 activities were increased in term placentas from diabetic patients. These changes were found even when MMP-2 protein concentrations were diminished and MMP-9 protein concentrations were not changed in the diabetic group. Increased protein nitration and specific nitration of MMP-2 and MMP-9 were found in term placentas from diabetic patients. Peroxynitrites were able to increase the activity of placental MMP-2 and MMP-9. Taken together, this study has shown for first time that peroxynitrites can nitrate and activate MMP-2 and MMP-9 in the placenta, a nitrative pathway possibly related to MMPs overactivity in the placentas from type 2 diabetic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balsells M, Garcia-Patterson A, Gich I, Corcoy R. Maternal and fetal outcome in women with type 2 versus type 1 diabetes melli-tus: a systematic review and metaanalysis. J Clin Endocrinol Metab. 2009;94(11):4284–4291.

    Article  PubMed  CAS  Google Scholar 

  2. Michael Weindling A. Offspring of diabetic pregnancy: short-term outcomes. Semin Fetal Neonatal Med. 2009;14(2):111–118.

    Article  PubMed  CAS  Google Scholar 

  3. Melamed N, Hod M. Perinatal mortality in pregestational diabetes. Int J Gynaecol Obstet. 2009;104(suppl 1):S20–S24.

    Article  PubMed  Google Scholar 

  4. Plagemann A, Harder T, Dudenhausen JW. The diabetic pregnancy, macrosomia, and perinatal nutritional programming. Nestle Nutr Workshop Ser Pediatr Program. 2008;61:91–102.

    Article  PubMed  CAS  Google Scholar 

  5. Thornburg KL, O'Tierney P, Louey S. The placenta is a programming agent in cardiovascular disease. Placenta. 2010;31(suppl): 54–59.

    Article  CAS  Google Scholar 

  6. Jansson T, Myatt L, Powell TL. The role of trophoblast nutrient and ion transporters in the development of pregnancy complications and adult disease. Curr Vase Pharmacol. 2009;7(4): 521–533.

    Article  PubMed  CAS  Google Scholar 

  7. Omu AE, Al-Azemi MK, Omu FE, et al. Butyrylcholinesterase activity in women with diabetes mellitus in pregnancy: correlation with antioxidant activity. J Obstet Gynaecol. 2010;30(2):122–126.

    Article  PubMed  CAS  Google Scholar 

  8. Pacher P, Obrosova IG, Mabley JG, Szabo C. Role of nitrosative stress and peroxynitrite in the pathogenesis of diabetic complications. Emerging new therapeutical strategies. Curr Med Chem. 2005;12(3):267–275.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Lyall F, Gibson JL, Greer IA, Brockman DE, Eis AL, Myatt L. Increased nitrotyrosine in the diabetic placenta: evidence for oxidative stress. Diabetes Care. 1998;21(10): 1753–1758.

    Article  PubMed  CAS  Google Scholar 

  10. Horvath EM, Magenheim R, Kugler E, et al. Nitrative stress and poly(ADP-ribose) polymerase activation in healthy and gestational diabetic pregnancies. Diabetologia. 2009;52(9): 1935–1943.

    Article  PubMed  CAS  Google Scholar 

  11. San Martin R, Sobrevia L. Gestational diabetes and the adenosine/ L-arginine/nitric oxide (ALANO) pathway in human umbilical vein endothelium. Placenta. 2006;27(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  12. Lappas M, Hiden U, Froehlich J, Desoye G, Haugel-De Mouzon S, Jawerbaum A. The role of oxidative stress in the pathophysiology of gestational diabetes mellitus. Antioxid Redox Signal. 2011; 15(12):3061–3100.

    Article  PubMed  CAS  Google Scholar 

  13. Pustovrh MC, Jawerbaum A, Capobianco E, et al. Oxidative stress promotes the increase of matrix metalloproteinases-2 and -9 activities in the feto-placental unit of diabetic rats. Free Radic Res. 2005;39(12):1285–1293.

    Article  PubMed  CAS  Google Scholar 

  14. Pustovrh C, Jawerbaum A, Sinner D, et al. Membrane-type matrix metalloproteinase-9 activity in placental tissue from patients with pre-existing and gestational diabetes mellitus. Reprod Fertil Dev. 2000;12(5–6):269–275.

    Article  PubMed  CAS  Google Scholar 

  15. Vu TH, Werb Z. Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev. 2000;14(17): 2123–2133.

    Article  PubMed  CAS  Google Scholar 

  16. Huang SC, Sheu BC, Chang WC, Cheng CY, Wang PH, Lin S. Extracellular matrix proteases-cytokine regulation role in cancer and pregnancy. Front Biosci. 2009;14:1571–1588.

    Article  Google Scholar 

  17. Cockle JV, Gopichandran N, Walker JJ, Levene MI, Orsi NM. Matrix metalloproteinases and their tissue inhibitors in preterm perinatal complications. Reprod Sci. 2007;14(7): 629–645.

    Article  PubMed  CAS  Google Scholar 

  18. Cohen M, Bischof P. Factors regulating trophoblast invasion. Gynecol Obstet Invest. 2007;64(3):126–130.

    Article  PubMed  Google Scholar 

  19. Valdes G, Corthorn J. Review: the angiogenic and vasodilatory utero-placental network. Placenta. 2011;32(suppl 2):S170–S175.

    Article  PubMed  CAS  Google Scholar 

  20. Wang W, Sawicki G, Schulz R. Peroxynitrite-induced myocardial injury is mediated through matrix metalloproteinase-2. Cardio-vasc Res. 2002;53(1):165–174.

    Article  PubMed  CAS  Google Scholar 

  21. Gu Z, Kaul M, Yan B, et al. S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science. 2002;297(5584): 1186–1190.

    Article  PubMed  CAS  Google Scholar 

  22. Harris LK, Mccormick J, Cartwright JE, Whitley GS, Dash PR. S-nitrosylation of proteins at the leading edge of migrating tropho-blasts by inducible nitric oxide synthase promotes trophoblast invasion. Exp Cell Res. 2008;314(8):1765–1776.

    Article  PubMed  CAS  Google Scholar 

  23. Mandal M, Mandal A, Das S, Chakraborti T, Sajal C. Clinical implications of matrix metalloproteinases. Mol Cell Biochem. 2003;252(l–2):305–329.

    Article  PubMed  CAS  Google Scholar 

  24. Derosa G, D'angelo A, Tinelli C, et al. Evaluation of metallopro-teinase 2 and 9 levels and their inhibitors in diabetic and healthy subjects. Diabetes Metab. 2007;33(2):129–134.

    Article  PubMed  CAS  Google Scholar 

  25. Thrailkill KM, Bunn RC, Moreau CS, et al. Matrix metalloproteinase-2 dysregulation in type 1 diabetes. Diabetes Care. 2007;30(9):2321–2326.

    Article  PubMed  CAS  Google Scholar 

  26. Pustovrh MC, Jawerbaum A, Capobianco E, White V, Lopez-Costa JJ, Gonzalez E. Increased matrix metalloproteinases 2 and 9 in placenta of diabetic rats at midgestation. Placenta. 2005; 26(4):339–348.

    Article  PubMed  CAS  Google Scholar 

  27. Pustovrh C, Jawerbaum A, Sinner D, White V, Capobianco E, Gonzalez E. Metalloproteinase 2 activity and modulation in uterus from neonatal streptozotocin-induced diabetic rats during embryo implantation. Reprod Fertil Dev. 2002;14(7–8): 479–485.

    Article  PubMed  CAS  Google Scholar 

  28. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254.

    Article  PubMed  CAS  Google Scholar 

  29. White V, Capobianco E, Higa R, et al. Increased nitration and diminished activity of copper/zinc superoxide dismutase in placentas from diabetic rats. Free Radic Res. 2010;44(12):1407–1415.

    Article  PubMed  CAS  Google Scholar 

  30. Ra HJ, Parks WC. Control of matrix metalloproteinase catalytic activity. Matrix Biol. 2007;26(8):587–596.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2): 351–358.

    Article  PubMed  CAS  Google Scholar 

  32. Szabo C. Multiple pathways of peroxynitrite cytotoxicity. Toxicol Lett. 2003;140–141:105–112.

    Article  PubMed  CAS  Google Scholar 

  33. Pustovrh MC, Jawerbaum A, White V, et al. The role of nitric oxide on matrix metalloproteinase 2 (MMP2) and MMP9 in placenta and fetus from diabetic rats. Reproduction (Cambridge, England). 2007;134(4):605–613.

    Article  PubMed  CAS  Google Scholar 

  34. Macmillan-Crow LA, Thompson JA. Immunoprecipitation of nitrotyrosine-containing proteins. Methods Enzymol. 1999;301: 135–145.

    Article  PubMed  CAS  Google Scholar 

  35. Jawerbaum A, White V. Animal models in diabetes and pregnancy. Endocr Rev. 2010;31(5):680–701.

    Article  PubMed  Google Scholar 

  36. Jawerbaum A, Gonzalez E. Diabetic pregnancies: the challenge of developing in a pro-inflammatory environment. Curr Med Chem. 2006;13(18):2127–2138.

    Article  PubMed  CAS  Google Scholar 

  37. Mott JD, Werb Z. Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol. 2004;16(5):558–564.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Dean RA, Overall CM. Proteomics discovery of metalloproteinase substrates in the cellular context by iTRAQ labeling reveals a diverse MMP-2 substrate degradome. Mol Cell Proteomics. 2007;6(4):611–623.

    Article  PubMed  CAS  Google Scholar 

  39. Demir-Weusten AY, Seval Y, Kaufmann P, Demir R, Yucel G, Huppertz B. Matrix metalloproteinases-2, -3 and -9 in human term placenta. Acta Histochem. 2007;109(5):403–412.

    Article  PubMed  CAS  Google Scholar 

  40. Weiss A, Goldman S, Shalev E. The matrix metalloproteinases (MMPS) in the decidua and fetal membranes. Front Biosci. 2007;12:649–659.

    Article  PubMed  CAS  Google Scholar 

  41. Schulz R. Intracellular targets of matrix metalloproteinase-2 in cardiac disease: rationale and therapeutic approaches. Annu Rev Pharmacol Toxicol. 2007;47:211–242.

    Article  PubMed  CAS  Google Scholar 

  42. Freise C, Erben U, Muche M, et al. The alpha 2 chain of collagen type VI sequesters latent proforms of matrix-metalloproteinases and modulates their activation and activity. Matrix Biol. 2009; 28(8):480–489.

    Article  PubMed  CAS  Google Scholar 

  43. Baker AH, Edwards DR, Murphy G. Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci. 2002; 115(pt 9):3719–3727.

    Article  PubMed  CAS  Google Scholar 

  44. Nelson KK, Melendez JA. Mitochondrial redox control of matrix metalloproteinases. Free Radic Biol Med. 2004;37(6):768–784.

    Article  PubMed  CAS  Google Scholar 

  45. Hu J, Van Den Steen PE, Sang QX, Opdenakker G. Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nat Rev Drug Discov. 2007;6(6):480–498.

    Article  PubMed  CAS  Google Scholar 

  46. Manicone AM, Mcguire JK. Matrix metalloproteinases as modulators of inflammation. Semin Cell Dev Biol. 2008;19(1):34–41.

    Article  PubMed  CAS  Google Scholar 

  47. Webster RP, Roberts VH, Myatt L. Protein nitration in placenta-functional significance. Placenta. 2008;29(12):985–994.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Webster RP, Brockman D, Myatt L. Nitration of p38 MAPK in the placenta: association of nitration with reduced catalytic activity of p38 MAPK in pre-eclampsia. Mol Hum Reprod. 2006; 12(ll):677–685.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Jawerbaum PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capobianco, E., White, V., Sosa, M. et al. Regulation of Matrix Metalloproteinases 2 and 9 Activities by Peroxynitrites in Term Placentas From Type 2 Diabetic Patients. Reprod. Sci. 19, 814–822 (2012). https://doi.org/10.1177/1933719111434544

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719111434544

Keywords

Navigation