基于电磁感应技术的棉田土壤电导率时空异质性研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

S156.4

基金项目:

兵团中青年创新领军人才项目(2020CB032)、国家重点研发计划项目(2018YFE0107000)和国家自然科学基金项目(42071068)共同资助


Research on Spatio-temporal Heterogeneity of Soil Electrical Conductivity in Cotton Field Based on Electromagnetic Induction Technology
Author:
Affiliation:

Fund Project:

Supported by the XPCC Young and Middle-aged Innovative Leading Talents Project (No.2020CB032), National Key R&D Project (No.2018YFE0107000) and the National Natural Science Foundation of China (No.42071068)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    土壤剖面盐分的分布位置和含量的三维可视化研究,对干旱区盐渍化土壤定额灌溉具有重要意义。通过采集4个不同时期的土壤表观电导率数据和同步采集的土壤剖面样品的室内测定电导率数据,利用多元线性回归方法构建了土壤剖面不同土层实测电导率与表观电导率之间的反演模型,采用三维反距离权重插值法(3D-IDW)实现了土壤盐分的三维可视化,在此基础上研究了新疆干旱区膜下滴灌棉田土壤剖面盐分的时空变化。结果表明:表观电导率与实测电导率之间具有较好的相关性,基于表观电导率数据构建的实测电导率反演模型的决定系数(R2)在0.82~0.99之间;基于3D-IDW的三维可视化技术可高精度地展示出盐分在土壤剖面中的分布位置和含量,不同时期土壤电导率交叉验证的R2均大于0.75;土壤电导率的三维数据统计结果表明,由于灌溉、覆膜和揭膜活动等人为因素和气温、蒸发作用、地下水水位等自然因素的作用,不同时期土壤剖面盐分的分布特征和含量均存在较大的差异,3月份土壤剖面盐分分布类型为均匀型,0~100 cm土壤剖面的电导率范围为0.78~0.88 dS·m–1,6、7和10月份为表聚型,6月和10月份的盐分主要集中分布于0~20 cm,0~20 cm的电导率分别为3.32和5.28dS·m–1,7月份的盐分主要集中于0~40 cm,0~40 cm的电导率为2.25~2.45 dS·m–1。研究结果对于精确棉田灌溉时间节点和灌水量具有指导作用。

    Abstract:

    [Objective] Characterizing spatial and temporal variability of soil salinity at field and landscape scales is important for a variety of agronomic and environmental concerns. In arid regios, soil salt content and its distribution position in the profile are important factors for the calculation of the irrigation quota of salinized soil. Due to the strong spatial variability of soil salinity content, the guiding value of soil surface salinization information for quota irrigation is very limited. A three-dimensional visualization study of the distribution and content of salinity in the soil profile is of great significance to the fixed irrigation of saline soil. The objective of this study was to evaluate apparent electrical conductivity (ECa) directed soil sampling as a basis for monitoring management-induced Spatio-temporal change in soil salinity.[Method] A soil salinity assessment study was conducted on an 18 hm2 saline-sodic field in Alar's Agricultural Science and Technology Park from March to November 2018. The study evaluated the three-dimensional spatio-temporal change that had occurred as a result of irrigation with drainage water over that period. Using geospatial electromagnetic induction (EMI) measurements of ECa and a spatial response surface sampling design 18 soil profile sites were selected and they reflected the ECa measurements every time. At each site soil profile samples were taken at 0.2 m intervals to a depth of 1 m and analyzed for electrical conductivity of the saturation extract (ECe). Also, the soil apparent conductivity data of four different periods and the electrical conductivity data of soil profile samples collected synchronously were analyzed. The inversion model between measured and apparent conductivity of different soil layers in the soil profile was constructed by the multiple linear regression method. Furthermore, the 3D visualization of soil salinity was realized by using 3D-IDW and the spatial and temporal changes of soil salinity in cotton field under mulch drip irrigation of Xinjiang were studied.[Result] The results showed that there was a good correlation between the apparent conductivity and the measured conductivity. The determination coefficient (R2) of the measured conductivity inversion model based on the apparent conductivity data was between 0.82 and 0.99. The results of 3D-dimensional data statistics of soil electrical conductivity showed that the distribution characteristics and content of soil salinity in different periods are quite different. These differences were attributed to human factors such as irrigation, film mulching and uncovering, and natural factors such as air temperature, evaporation and groundwater level. Also, the distribution type of soil salinity in March was uniform and the electrical conductivity range of the 0-100cm soil profile was 0.78 to 0.88 dS·m–1. The salinity in June and October was mainly concentrated in 0~20 cm and the electrical conductivity was 3.32 to 5.28 dS·m–1, respectively. Also, the electrical conductivity of 20~100 cm was 0.99~1.36 to 0.95~1.70 dS·m–1, respectively. In July, the salinity was mainly concentrated in 0~40 cm, and the conductivity in 0-40cm was 2.25~2.45 dS·m–1while the conductivity of 40~100 cm was 0.87~0.93 dS·m–1.[Conclusion] An assessment of three- dimensional spatio–temporal changes in soil salinity was conducted to provide a preliminary evaluation of the sustainability of irrigation quota on the Agricultural Science and Technology Park to ascertain its potential as an alternative for drainage water disposal. The results of this study can be used as guidance for accurate irrigation application in cotton fields.

    参考文献
    相似文献
    引证文献
引用本文

冯春晖,刘新路,纪文君,吴家林,柳维扬,彭杰.基于电磁感应技术的棉田土壤电导率时空异质性研究[J].土壤学报,2022,59(4):999-1011. DOI:10.11766/trxb202010170576 FENG Chunhui, LIU Xinlu, JI Wenjun, WU Jialin, LIU Weiyang, PENG Jie. Research on Spatio-temporal Heterogeneity of Soil Electrical Conductivity in Cotton Field Based on Electromagnetic Induction Technology[J]. Acta Pedologica Sinica,2022,59(4):999-1011.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-10-17
  • 最后修改日期:2021-02-22
  • 录用日期:2021-09-16
  • 在线发布日期: 2021-09-24
  • 出版日期: 2022-04-11