Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 7

See more details

Referenced in 1 patents
On 1 Facebook pages
Referenced in 1 Wikipedia pages
264 readers on Mendeley
  • Article usage
  • Citations to this article (315)

Advertisement

Research Article Free access | 10.1172/JCI1557

Evidence for defects in the trafficking and translocation of GLUT4 glucose transporters in skeletal muscle as a cause of human insulin resistance.

W T Garvey, L Maianu, J H Zhu, G Brechtel-Hook, P Wallace, and A D Baron

Department of Medicine, Medical University of South Carolina and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29425, USA. garveywt@musc.edu

Find articles by Garvey, W. in: JCI | PubMed | Google Scholar

Department of Medicine, Medical University of South Carolina and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29425, USA. garveywt@musc.edu

Find articles by Maianu, L. in: JCI | PubMed | Google Scholar

Department of Medicine, Medical University of South Carolina and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29425, USA. garveywt@musc.edu

Find articles by Zhu, J. in: JCI | PubMed | Google Scholar

Department of Medicine, Medical University of South Carolina and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29425, USA. garveywt@musc.edu

Find articles by Brechtel-Hook, G. in: JCI | PubMed | Google Scholar

Department of Medicine, Medical University of South Carolina and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29425, USA. garveywt@musc.edu

Find articles by Wallace, P. in: JCI | PubMed | Google Scholar

Department of Medicine, Medical University of South Carolina and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29425, USA. garveywt@musc.edu

Find articles by Baron, A. in: JCI | PubMed | Google Scholar

Published June 1, 1998 - More info

Published in Volume 101, Issue 11 on June 1, 1998
J Clin Invest. 1998;101(11):2377–2386. https://doi.org/10.1172/JCI1557.
© 1998 The American Society for Clinical Investigation
Published June 1, 1998 - Version history
View PDF
Abstract

Insulin resistance is instrumental in the pathogenesis of type 2 diabetes mellitus and the Insulin Resistance Syndrome. While insulin resistance involves decreased glucose transport activity in skeletal muscle, its molecular basis is unknown. Since muscle GLUT4 glucose transporter levels are normal in type 2 diabetes, we have tested the hypothesis that insulin resistance is due to impaired translocation of intracellular GLUT4 to sarcolemma. Both insulin-sensitive and insulin-resistant nondiabetic subgroups were studied, in addition to type 2 diabetic patients. Biopsies were obtained from basal and insulin-stimulated muscle, and membranes were subfractionated on discontinuous sucrose density gradients to equilibrium or under nonequilibrium conditions after a shortened centrifugation time. In equilibrium fractions from basal muscle, GLUT4 was decreased by 25-29% in both 25 and 28% sucrose density fractions and increased twofold in both the 32% sucrose fraction and bottom pellet in diabetics compared with insulin-sensitive controls, without any differences in membrane markers (phospholemman, phosphalamban, dihydropyridine-binding complex alpha-1 subunit). Thus, insulin resistance was associated with redistribution of GLUT4 to denser membrane vesicles. No effects of insulin stimulation on GLUT4 localization were observed. In non-equilibrium fractions, insulin led to small GLUT4 decrements in the 25 and 28% sucrose fractions and increased GLUT4 in the 32% sucrose fraction by 2.8-fold over basal in insulin-sensitive but only by 1.5-fold in both insulin-resistant and diabetic subgroups. The GLUT4 increments in the 32% sucrose fraction were correlated with maximal in vivo glucose disposal rates (r = +0.51, P = 0.026), and, therefore, represented GLUT4 recruitment to sarcolemma or a quantitative marker for this process. Similar to GLUT4, the insulin-regulated aminopeptidase (vp165) was redistributed to a dense membrane compartment and did not translocate in response to insulin in insulin-resistant subgroups. In conclusion, insulin alters the subcellular localization of GLUT4 vesicles in human muscle, and this effect is impaired equally in insulin-resistant subjects with and without diabetes. This translocation defect is associated with abnormal accumulation of GLUT4 in a dense membrane compartment demonstrable in basal muscle. We have previously observed a similar pattern of defects causing insulin resistance in human adipocytes. Based on these data, we propose that human insulin resistance involves a defect in GLUT4 traffic and targeting leading to accumulation in a dense membrane compartment from which insulin is unable to recruit GLUT4 to the cell surface.

Version history
  • Version 1 (June 1, 1998): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 7
  • Article usage
  • Citations to this article (315)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 patents
On 1 Facebook pages
Referenced in 1 Wikipedia pages
264 readers on Mendeley
See more details