Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 9

See more details

Referenced in 1 policy sources
Referenced in 1 Wikipedia pages
Referenced in 1 clinical guideline sources
35 readers on Mendeley
  • Article usage
  • Citations to this article (297)

Advertisement

Research Article Free access | 10.1172/JCI117623

Identification of the same factor V gene mutation in 47 out of 50 thrombosis-prone families with inherited resistance to activated protein C.

B Zöller, P J Svensson, X He, and B Dahlbäck

Department of Clinical Chemistry, University of Lund, Malmö General Hospital, Sweden.

Find articles by Zöller, B. in: JCI | PubMed | Google Scholar

Department of Clinical Chemistry, University of Lund, Malmö General Hospital, Sweden.

Find articles by Svensson, P. in: JCI | PubMed | Google Scholar

Department of Clinical Chemistry, University of Lund, Malmö General Hospital, Sweden.

Find articles by He, X. in: JCI | PubMed | Google Scholar

Department of Clinical Chemistry, University of Lund, Malmö General Hospital, Sweden.

Find articles by Dahlbäck, B. in: JCI | PubMed | Google Scholar

Published December 1, 1994 - More info

Published in Volume 94, Issue 6 on December 1, 1994
J Clin Invest. 1994;94(6):2521–2524. https://doi.org/10.1172/JCI117623.
© 1994 The American Society for Clinical Investigation
Published December 1, 1994 - Version history
View PDF
Abstract

Resistance to activated protein C (APC) is the most prevalent inherited cause of venous thrombosis. The APC resistance phenotype is associated with a single point mutation in the factor V gene, changing Arg506 in the APC cleavage site to a Gln. We have investigated 50 Swedish families with inherited APC resistance for this mutation and found it to be present in 47 of them. Perfect cosegregation between a low APC ratio and the presence of mutation was seen in 40 families. In seven families, the co-segregation was not perfect as 12 out of 57 APC-resistant family members were found to lack the mutation. Moreover, in three families with APC resistance, the factor V gene mutation was not found, suggesting another still unidentified cause of inherited APC resistance. Of 308 investigated families members, 146 were normal, 144 heterozygotes, and 18 homozygotes for the factor V gene mutation and there were significant differences in thrombosis-free survival curves between these groups. By age 33 yr, 8% of normals, 20% of heterozygotes, and 40% of homozygotes had had manifestation of venous thrombosis.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2521
page 2521
icon of scanned page 2522
page 2522
icon of scanned page 2523
page 2523
icon of scanned page 2524
page 2524
Version history
  • Version 1 (December 1, 1994): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 9
  • Article usage
  • Citations to this article (297)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 policy sources
Referenced in 1 Wikipedia pages
Referenced in 1 clinical guideline sources
35 readers on Mendeley
See more details