Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114744

Mast cell chymase potentiates histamine-induced wheal formation in the skin of ragweed-allergic dogs.

I Rubinstein, J A Nadel, P D Graf, and G H Caughey

Cardiovascular Research Institute, University of California, San Francisco 94143.

Find articles by Rubinstein, I. in: JCI | PubMed | Google Scholar

Cardiovascular Research Institute, University of California, San Francisco 94143.

Find articles by Nadel, J. in: JCI | PubMed | Google Scholar

Cardiovascular Research Institute, University of California, San Francisco 94143.

Find articles by Graf, P. in: JCI | PubMed | Google Scholar

Cardiovascular Research Institute, University of California, San Francisco 94143.

Find articles by Caughey, G. in: JCI | PubMed | Google Scholar

Published August 1, 1990 - More info

Published in Volume 86, Issue 2 on August 1, 1990
J Clin Invest. 1990;86(2):555–559. https://doi.org/10.1172/JCI114744.
© 1990 The American Society for Clinical Investigation
Published August 1, 1990 - Version history
View PDF
Abstract

Skin mast cells release the neutral protease chymase along with histamine during degranulation. To test the hypothesis that chymase modulates histamine-induced plasma extravasation, we measured wheal formation following intradermal injection of purified mast cell chymase and histamine into the skin of ragweed-allergic dogs. We found that chymase greatly augments histamine-induced wheal formation. The magnitude of the potentiating effect increases with increasing doses of chymase and becomes maximal approximately 30 min after administration. Injection of chymase without histamine does not evoke wheal formation. The chymase potentiation of histamine-induced skin responses is prevented completely by pretreatment with the H1-receptor antagonist pyrilamine, and is prevented by inactivation of chymase with soybean trypsin inhibitor, suggesting that both histamine and preserved catalytic activity are required for the effects of chymase. To examine the effects of histamine and chymase released in situ in further experiments, we measured wheal size following local degranulation of mast cells by intradermal injection of ragweed antigen or compound 48/80. We found that pretreatment with either soybean trypsin inhibitor or pyrilamine markedly reduces ragweed antigen- or 48/80-induced wheal formation, supporting the results obtained by injection of exogenous chymase and histamine. These findings suggest a novel and important proinflammatory role for chymase in modulating the effects of histamine on vascular permeability during mast cell activation.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 555
page 555
icon of scanned page 556
page 556
icon of scanned page 557
page 557
icon of scanned page 558
page 558
icon of scanned page 559
page 559
Version history
  • Version 1 (August 1, 1990): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts