Skip to main content

Open Access A New Derivation of Exact Solutions for Incompressible Magnetohydrodynamic Plasma Turbulence

The objective of this paper is to study the propagation of nonlinear, quasi-parallel, magnetohydrodynamic waves of small-amplitude in a cold Hall plasma of constant density. Magnetohydrodynamic equations, along with the cold plasma were expanded using the reductive perturbation method, which leads to a nonlinear partial differential equation that complies with a modified form of the derivative nonlinear evolution Schrödinger equation. Exact solutions of the turbulent magnetohydrodynamic model in plasma were formulated for the physical quantities that describe the problem completely by using the complex ansatz method. In addition, the complete set of equations was used taking into account the magnetic field, which can be considered to be constant in the x-direction to create stable vortex waves. Vortex solutions of the modified nonlinear Schrödinger equation (MNLS) were compared with the solutions of incompressible magnetohydrodynamic equations. The obtained equations differ from the standard NLS equation by one additional term that describes the interaction of the nonlinear waves with the constant density. The behavior of both the velocity profile and the waveform of pressure were studied. The results showed that there are clear disturbances in the identity of the velocity and thus pressure. The identity of both velocity and pressure results from that a magnetic field is formed.

Keywords: Incompressible Magnetohydrodynamics; Modified Nonlinear Schrödinger Equation; Plasma Turbulence; Reductive Perturbation Method; The Complex Ansatz Method

Document Type: Research Article

Affiliations: 1: Department of Mathematics and Computer Science, Menoufia University, Shebin-Elkoom, 32511 Egypt 2: Physics Department, Faculty of Science, Menoufia University, Shebin Elkom, 32511 Egypt

Publication date: 01 March 2021

More about this publication?
  • Journal of Nanofluids (JON) is an international multidisciplinary peer-reviewed journal covering a wide range of research topics in the field of nanofluids and fluid science. It is an ideal and unique reference source for scientists and engineers working in this important and emerging research field of science, engineering and technology. The journal publishes full research papers, review articles with author's photo and short biography, and communications of important new findings encompassing the fundamental and applied research in all aspects of science and engineering of nanofluids and fluid science related developing technologies.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content