Skip to main content

Synthesis and Electrochemical Properties of CuC2O4·xH2O and CuC2O4·xH2O/Carbon Nanotubes (CNTs) Anodes for Lithium-Ion Batteries

Buy Article:

$107.14 + tax (Refund Policy)

Pure CuC2O4·xH2O and CuC2O4·xH2O/carbon nanotubes (CNTs) composites are synthesized by a low-temperature hydrothermal process. The structure and morphology of the products are analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TG) and Raman spectrum. The results demonstrate that the as-prepared CuC2O4·xH2O takes on a microsphere-like morphology, all CuC2O4·xH2O/CNTs nanocomposites are constructed by the intertwining of tabular CuC2O4·xH2O nanoparticles (NPs) and CNTs to form a tanglesome net. When evaluated as an anode materials for lithium ion batteries (LIBs), all CuC2O4·xH2O/CNTs electrodes possess higher reversible discharge capacities (more than 1000 mAh g-1) than the pure CuC2O4·xH2O, up to 200th cycle at a current density of 100 mA g-1. The results illustrate that the addition of CNTs can enhance the electrochemical performance of CuC2O4·xH2O. Overall, CuC2O4·xH2O/CNTs composite can be a promising candidate used as a promising anode for LIBs.

Keywords: Anode Materials; Carbon Nanotubes; Hydrate Copper Oxalate; Lithium-Ion Battery

Document Type: Research Article

Affiliations: 1: Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory of Green Preparation and Application for Functional Materials, Hubei University, Wuhan 430062, P. R. China 2: Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Sciences and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, P. R. China

Publication date: 01 March 2020

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content