Skip to main content

Temperature Dependant Characteristics of Zinc Oxide Nanorods Based Heterojunction Diode

Buy Article:

$107.14 + tax (Refund Policy)

Temperature-dependant characteristics of heterojunction diode made by n-ZnO nanorods grown on p-silicon substrates has been characterized and demonstrated in this paper. ZnO nanorods were grown onto the silicon substrate via simple thermal evaporation process by using metallic zinc powder in the presence of oxygen at ∼550 °C without the use of any metal catalysts or additives. The as-grown ZnO nanorods were characterized in terms of their structural and optical properties. The detailed structural studies by XRD, TEM, HRTEM and SAED revealed that the grown nanorods are well-crystalline with the wurtzite hexagonal phase and preferentially grown along the [0001] direction. The as-grown n-ZnO nanorods grown on p-Si substrate were used to fabricate pn heterojunction diode. The fabricated pn junction diode attained almost similar turn-on voltage of ∼0.6 V. The values of turn-on voltage and least current are same with the variations of temperature (i.e., 27 °C, 70 °C and 130 °C).

Keywords: ALIGNED HEXAGONAL NANORODS; HETEROJUNCTION DEVICE; N-ZNO; P-SI; TEMPERATURE-DEPENDANT DIODE PROPERTIES

Document Type: Research Article

Publication date: 01 February 2012

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content