Skip to main content

Engineering Thermal Stability in RNA Phage Capsids via Disulphide Bonds

Buy Article:

$107.14 + tax (Refund Policy)

The RNA bacteriophages, a group that includes phages Qβ and MS2, have a number of potential bionanotechnological applications, including cell specific drug delivery and as substrates for the formation of novel materials. Despite extensive sequence identity between their coat protein subunits, and an almost identical three-dimensional fold, Qβ and MS2 capsids have dramatically different thermal stabilities. The increased stability of Qβ has been correlated with the inter-subunit disulphide bonds present in that capsid and not present in MS2. We have tested this hypothesis directly using mass spectrometry. Analysis of the dissociated coat protein subunits suggests that inter-molecular disulphides are formed at the capsid five-fold but may not be at the three-fold axes. This conclusion has been tested by engineering disulphide cross-links into either the five-fold or three-fold positions of the recombinant MS2 capsid. Five-fold cross-linking results in a mutant with stability properties similar to those of Qβ. Three-fold cross-linking results in a mutant unable to assemble T = 3 shells, implying that five-fold structures are on pathway to capsid assembly in these phages. The results demonstrate how it is possible to redesign the physical properties of phage shells and may be of general relevance to future applications of viruses and virus-like particles.

Keywords: DISULPHIDE BONDS; ELECTROSPRAY; MASS SPECTROMETRY; RNA PHAGES; THERMAL STABILITY

Document Type: Research Article

Publication date: 01 December 2005

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content