Skip to main content

SnO2 Core–Shell Microspheres with Excellent Photocatalytic Properties

Buy Article:

$107.14 + tax (Refund Policy)

In this paper, SnO2 core–shell microspheres with large specific surface area are synthesized through a facile and effective hydrothermal route. The microstructure and photocatalytic properties of the as-synthesized products are investigated. The diameter of microsphere is about 600 nm and the average thickness of the shell is 80 nm. The morphology can be tailored by adjusting the reaction temperature and the dose of Sn precursor. Photocatalytic test reveals that methylene blue can be degraded nearly completely (over 97%) after 30 min UV light irradiation. Demonstration of efficient photocatalytic activity of the SnO2 core–shell microspheres was also made to other organic pollutants such as Congo red aqueous solution and methyl orange aqueous solution under in the same conditions, indicating the versatile potential of such microsphere product in practical applications.

Keywords: CORE–SHELL MICROSPHERES; PHOTOCATALYTIC PROPERTIES; SNO2

Document Type: Research Article

Publication date: 01 July 2012

More about this publication?
  • Science of Advanced Materials (SAM) is an interdisciplinary peer-reviewed journal consolidating research activities in all aspects of advanced materials in the fields of science, engineering and medicine into a single and unique reference source. SAM provides the means for materials scientists, chemists, physicists, biologists, engineers, ceramicists, metallurgists, theoreticians and technocrats to publish original research articles as reviews with author's photo and short biography, full research articles and communications of important new scientific and technological findings, encompassing the fundamental and applied research in all latest aspects of advanced materials.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content