Skip to main content
Log in

Carbon-carbon bond cleavage reactions of 1,2-diamines initiated by photoinduced electron transfer

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The oxidative photofragmentations of a series of 1,2-diamines have been studied in reaction with photoexcited electron acceptors under a variety of conditions. All the diamines were found to undergo a clean two electron redox reaction (in the presence of trace amounts of water) to produce after cleavage, two free amines, two aldehydes, and the reduced acceptor. Investigation of the role of variables (solvent, acceptor, temperature, isotope effects, etc.) on the quantum yields for diamine fragmentation leads to a mechanistic picture in which the critical step in the reaction is an unassisted fragmentation. Although formally similar to the photoreactions of previously studied aminoalcohols, the photoinduced electron transfer fragmentation reaction of 1,2-diamines shows key mechanistic differences and is apparently both a more general reaction and significantly more rapid in several cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. a) S.L. Mattes and S.L. Farid. In: Organic Photochemistry, A. Padwa (Ed.), 1983, p. 6; b) M.A. Fox and M. Chanon (Eds.), Photoinduced Electron Transfer. Part C. Amsterdam, 1988.

  2. A. Weiler, Z. Phys. Chem. (Wiesbaden), 130, 93 (1982).

    Google Scholar 

  3. D.G. Whitten, C. Chesta, X. Ci, M.A. Kellett, and V.W.W. Yam. In: Photochemical Processes in Organized Molecular Systems, K. Honda (Ed.), Elsevier Science Publishers, 1991, pp. 213–236.

  4. I.R. Gould, R. Moody, and S. Farid, J. Am. Chem. Soc. 110, 7242 (1988).

    Article  CAS  Google Scholar 

  5. I.R. Gould, D. Ege, S.L. Mattes, and S. Farid, J. Am. Chem. Soc. 109, 3794 (1987).

    Article  CAS  Google Scholar 

  6. F.D. Saeva, Topics in Current Chemistry 59, 156 (1990), and references therein.

    Google Scholar 

  7. S. Chatterjee, P. Gottschalk, P.D. David, and G.B. Schuster, J. Am. Chem. Soc. 110, 2326 (1988).

    Article  CAS  Google Scholar 

  8. a) H.C. Gardner and J.K. Kochi, J. Am. Chem. Soc. 98, 2460 (1976); b) J.Y. Chen, H.C. Gardner, and J.K. Kochi, J. Am. Chem. Soc. 98, 6150 (1976); c) H.C. Gardner and J.K. Kochi, J. Am. Chem. Soc. 97, 5026(1975).

    Article  CAS  Google Scholar 

  9. a) D.F. Eaton, J. Am. Chem. Soc. 103, 7235 (1981); b) D.F. Eaton, J. Am. Chem. Soc. 102, 3278 (1980). Ibid, 102, 3280 (1980).

    Article  CAS  Google Scholar 

  10. D.F. Eaton, Adv. Photochem. 13, 427 (1986).

    Article  CAS  Google Scholar 

  11. a) D.R. Arnold and A.J. Maroulis, J. Am. Chem. Soc. 98, 5931 (1976); b) A. Okamoto, M.S. Snow, and D.R. Arnold, Tetrahedron 42, 6175 (1986); c) R. Popielarz and D.R. Arnold, J. Am. Chem. Soc. 112, 3068 (1990).

    Article  CAS  Google Scholar 

  12. A. Albini, E. Fasani, and M. Mella, J. Am. Chem. Soc. 108, 4119 (1986).

    Article  CAS  Google Scholar 

  13. a) L. Reichel, G.W. Griffin, A.J. Muller, P.K. Das, and S. Edge, Can. J. Chem. 62, 424 (1984); b) H.F. Davis, P.K. Das, L.W. Reichel, and G.W. Griffin, J. Am. Chem. Soc. 106, 6968 (1984).

    Article  CAS  Google Scholar 

  14. S. Sankararaman, S. Perrier, and J.K. Kochi, J. Am. Chem. Soc. 111, 6448 (1989).

    Article  CAS  Google Scholar 

  15. a) P. Maslak and W.H. Chapman, Jr., J. Chem. Soc, Chem. Commun. 1809 (1989); b) P. Maslak and W.H. Chapman, Jr., Tetrahedron 46, 2715 (1990).

  16. X. Ci, M.A. Kellett, and D.G. Whitten, J. Am. Chem. Soc. 113, 3893 (1991).

    Article  CAS  Google Scholar 

  17. S.G. Cohen, A. Parola, and G.H. Parsons, Jr., Chem. Reviews 73, 141 (1973).

    Article  CAS  Google Scholar 

  18. A.M. Nicholas and D.R. Arnold, Can. J. Chem. 60, 2165 (1982).

    Article  CAS  Google Scholar 

  19. P.J. DeLaive, T.K. Foreman, M. Graetzel, and D.G. Whitten, J. Am. Chem. Soc. 102, 5627 (1980).

    Article  CAS  Google Scholar 

  20. a) L.Y.C. Lee, X. Ci, C. Giannotti, and D.G. Whitten, J. Am. Chem. Soc. 108, 175 (1986); b) L.Y.C. Lee, K.S. Schanze, C. Giannotti, and D.G. Whitten. In: Homogeneous and Heterogeneous Catalysis, E. Pelizzetti and N.Serpone, (Eds.), D. Reidel Publishing Co. 1986, p. 147.

    Article  CAS  Google Scholar 

  21. W.R. Bergmark and D.G. Whitten, J. Am. Chem. Soc. 112, 4042 (1990).

    Article  CAS  Google Scholar 

  22. R.S. Davidson and S.P. Orton, J. Chem. Soc., Chem. Commun. 209 (1974).

  23. a) X. Ci, L.Y.C. Lee, and D.G. Whitten, J. Am. Chem. Soc. 109, 2536 (1987); b) X. Ci and D.G. Whitten, J. Am. Chem. Soc. 109, 7215 (1987; c) X. Ci and D.G. Whitten, J. Am. Chem. Soc. 111, 3459 (1989).

    Article  CAS  Google Scholar 

  24. L.A. Lucia, R. D. Burton, and K.S. Schanze, J. Phys. Chem. 97, 9078 (1993).

    Article  CAS  Google Scholar 

  25. G.A. Grob, Angew. Chem., Int. Ed. Engl. 8, 535 (1969).

    Article  CAS  Google Scholar 

  26. M.A. Kellett and D.G. Whitten, J. Am. Chem. Soc. 111, 2314 (1989).

    Article  CAS  Google Scholar 

  27. a) A.D. Kirsch and G.M. Wyman, J. Phys. Chem. 81, 413 (1977); b) R. Memming and K. Kobs, J. Phys. Chem. 85, 2771 (1981).

    Article  CAS  Google Scholar 

  28. X. Ci and D.G. Whitten, J. Phys. Chem. 95, 1988 (1991).

    Article  CAS  Google Scholar 

  29. K.S. Schanze, L.Y.C. Lee, C. Giannotti, and D.G. Whitten, J. Am. Chem. Soc. 108, 2646 (1986).

    Article  CAS  Google Scholar 

  30. M.A. Kellett, D.G. Whitten, I.R. Gould, and W.R. Bergmaark, J. Am. Chem. Soc. 113, 358 (1991).

    Article  CAS  Google Scholar 

  31. Secondary actinometer solution of TI and triethylamine in benzene, K.S. Schanze, Ph. D. Dissertation, University of North Carolina at Chapel Hill, 1983. Potassium ferrioxalate actinometry used for Dicyanoanthracene samples.

  32. J.R. Lindsay Smith and D. Masheder, J. Chem. Soc, Perkin Trans. 2 1732 (1977).

    Google Scholar 

  33. T. Fuchigami, T. Nonaka, C. Watanabe, A. Yoshiyama, and T. Sekine, Denki Kagaku oyobi Kogyo Butsuri Kagaku 51, 812 (1983).

    CAS  Google Scholar 

  34. J.R. Lindsay Smith and D. Masheder, J. Chem. Soc, Perkin Trans. 2 47 (1976).

    Google Scholar 

  35. C.E. Bricker and H.R. Johnson, Ind. and Eng. Commun. (Analyt. Edn.) 17, 400 (1976).

    Article  Google Scholar 

  36. H.K. Hall, Jr., J. Am. Chem. Soc. 79, 5441 (1957).

    Article  CAS  Google Scholar 

  37. J.W. Leon and D.G. Whitten, J. Am. Chem. Soc. 115, 8038, 1993.

    Article  CAS  Google Scholar 

  38. J.P. Dinnocenzo, unpublished results (1987).

  39. D. Griller, J.A. Martinho Simoes, P. Mulder, B.A. Sim, and D.D.M. Wayner, J. Am. Chem. Soc. 111, 7872 (1989).

    Article  CAS  Google Scholar 

  40. S.G. Lias, J.E. Bartmess, J.F. Liebman, J.L. Holmes, R.D. Levin, and W.G. Mallard, J. Phys. Chem. Ref. Data 17, supplement 1, 1988.

    Article  Google Scholar 

  41. a) D.F. McMillen and D.M. Golden, Ann. Rev. Phys. Chem. 33, 493 (1982); b) J.B. Pedley and J. Rylance, Sussex - N.P.L Computer Analyzed Thermochemical Data: Organic and Organometallic Compounds, Brighton, 1977; c) S.W. Benson, Thermochemical Kinetics: Methods for the Estimation of Thermochemical Data and Rate Parameters, 2nd Ed., Wiley, New York, 1976.

    Article  CAS  Google Scholar 

  42. K. Kimura, Handbook of Hel Photoelectron Spectra of Fundamental Organic Molecules, Halsted Press, New York, 1981.

    Google Scholar 

  43. a) D. Griller and F.P. Lossing, J. Am. Chem. Soc. 103, 1586 (1981); b) F.A. Houle and J.L. Beauchamp, J. Am. Chem. Soc. 100, 3290 (1978).

    Article  CAS  Google Scholar 

  44. Y. Loguinov, V.V. Takhistov, and L.P. Vatlina, Org. Mass Spectrom. 16, 239 (1981).

    Article  CAS  Google Scholar 

  45. D.D.M. Wayner, J.J. Dannenberg, and D. Griller, Chem. Phys. Lett. 131, 189 (1986).

    Article  CAS  Google Scholar 

  46. H.M. Rosenstock, K. Draxl, B.W. Steiner, and J.T. Herron, Energetics of Gaseous Ions in J. Phys. and Chem. Ref. Data, 1977, p. 6.

  47. A. Weller, Z Phys. Chem. (Munich) 69, 183 (1970).

    Google Scholar 

  48. S. Farid, private communication.

  49. A. Weller, Z Phys. Chem. (Wiesbaden) 130, 129 (1982).

    CAS  Google Scholar 

  50. I.R. Gould, J.E. Moser, D. Ege, and S. Farid, J. Am. Chem. Soc. 110, 1991 (1988).

    Article  CAS  Google Scholar 

  51. a) G. Grampp and G. Hetz, Ber. Bensen-Ges. Phys. Chem. 96, 198 (1992); b) G. Grampp, Angew Chem., Int. Ed. Engl. 32, 691 (1993).

    CAS  Google Scholar 

  52. I.R. Gould, D. Ege, J.E. Moser, and S. Farid, J. Am. Chem. Soc. 112, 4290 (1990).

    Article  CAS  Google Scholar 

  53. Calculations of the quantum yield for 0.25 M biphenyl quenching of DCA show a maximum value of 0.85 which is due to competition with the 0.005 M amine donor direct quenching and fluorescence since 0.25 M biphenyl has ~92% efficiency for quenching DCA. In addition, it is concievable to have some reaction of the amine donor with the DCA, biphenyl radical ion pair before separation which would lower the observed quantum efficiency even farther. See reference 52.

  54. T.H. Lowry and K.S. Richardson, Mechanism and Theory in Organic Chemistry, Harper & Row, New York, 1987, p. 232.

    Google Scholar 

  55. S.W. Benson, Thermochemicai Kinetics, Wiley, New York, 1968.

    Google Scholar 

  56. J.H. Penn, Z. Lin, and D.L. Deng, J. Am. Chem. Soc. 113, 1001 (1991).

    Article  CAS  Google Scholar 

  57. P. Maslak, S.L. Asel, J. Am. Chem. Soc. 110, 8260 (1988).

    Article  CAS  Google Scholar 

  58. a) W. Reeve, CM. Erikson, and P.F. Aluotto, Can. J. Chem. 57, 2747 (1979); b) A. Streitweiser, Jr. and F. Guibé, J. Am. Chem. Soc. 100, 4532 (1978).

    Article  CAS  Google Scholar 

  59. M.A. Kellett and D.G. Whitten, Mol. Cryst. Liq. Cryst. 194, 275 (1991).

    Article  CAS  Google Scholar 

  60. a) J.E. Bäckvall, Tetrahedron Letters 163 (1978); b) B. Åkermark and J.E. Bäckvall, Tetrahedron Letters 819 (1975); c) B. Åkermark, J.E. Bäckvall, L.S. Hegedus, and J. Zetterberg, J. Organomet. Chem. 72, 127(1974).

  61. a) S. Trippett, J. Chem. Soc. 4407 (1957); b) F. Basolo, R.K. Murmann, and Y.T. Chen, J. Am. Chem. Soc. 75, 1478 (1953).

  62. a) O.F. Williams and J.C. Bailar, Jr., J. Am. Chem. Soc. 81, 4464 (1959); b) D.H. Hunter and S.K. Sim, Can. J. Chem. 50, 669 (1972); c) D.H. Hunter and S.K. Sim, Can. J. Chem. 50 678 (1972); c) I. Lifschitz and J.G. Bos, Rec. Trav. Chim. 59, 173 (1940).

    Article  CAS  Google Scholar 

  63. a) R.W. Moshier and L. Spialter, J. Org. Chem. 21, 1050 (1956); b) A.F. Meiners, C. Bolze, A.L. Scherer, and F.V. Morriss, J. Org. Chem. 23, 1122 (1958); c) S.H. Pine and B.L. Sanchez, J. Org. Chem. 36, 829 (1971).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kellett, M.A., Whitten, D.G. Carbon-carbon bond cleavage reactions of 1,2-diamines initiated by photoinduced electron transfer. Res. Chem. Intermed. 21, 587–611 (1995). https://doi.org/10.1163/156856795X00440

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856795X00440

Keywords

Navigation