Skip to main content
Log in

Photoelectric properties of Cz-Py-MV2+ monolayer films

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Diaza-18-crown-6-ethers appending two pyrenyl (Py-C) or two carbazolyl (Cz-C) groups form 1 : 1 host–guest complexes with methyl viologen chloride (MV2+). These complexes were assembled into monolayers by Langmuir-Blodgett (L-B) technique. The generated assembly involves the general structure of donor-sensitizer-acceptor (Cz-Py-MV2+) in space, although any of the photo- and redox-active components are not covalently bonded. This assembly was transferred on an indiumtin oxide (ITO) glass to fabricate an electrode. The photoinduced voltage of this electrode was measured with a saturated calomel reference electrode in hydroquinone (H2Q) solution to be ca. 168 mV with the light intensity of ca. 218 mW/cm2. This electrode was used as the light electrode to construct a photogalvanic cell with a platinum electrode as the dark electrode. Irradiation of the light electrode resulted in anodic photocurrent. The effects of light intensity, bias voltage, concentration of H2Q and oxygen on the photocurrent were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. A. Fox and M. Chanon (Eds), Photoinduced Electron Transfer, Vols A-D. Elsevier, Amsterdam (1988).

    Google Scholar 

  2. J. Mattay (Ed.), Photoinduced electron transfer I-V, in: Topics in Current Chemistry, Vols 156, 158, 159, 163, 168. Springer-Verlag, Berlin (1990-1993).

  3. K. S. Schanze and K. A. Walters, in: Molecular and Supramolecular Photochemistry, Vol.2: Organic and Inorganic Photochemistry, V. Ramamurthy and K. S. Schanze (Eds), pp. 75-127. Marcel Dekker, New York (1998).

    Google Scholar 

  4. T. Klumpp, M. Linsenmann, S. L. Larson, B. R. Limoges, D. Bürssner, E. B. Krissinel, C. M. Elliott and U. E. Steiner, J.Am.Chem.Soc. 121, 1076 (1999).

    Google Scholar 

  5. D. M. Kaschak, J. T. Lean, C. C. Waraksa, G. B. Saupe, H. Usami and T. E. Mallouk, J.Am.Chem.Soc. 121, 3435 (1999).

    Google Scholar 

  6. D. Gust, T. A. Moore and A. L. Moore, Acc.Chem.Res. 26, 198 (1993).

    Google Scholar 

  7. D. Gust, T. A. Moore, A. L. Moore, S. J. Lee, E. Bittersman, D. K. Juttrull, A. A. Rehms, J. M. DeGraziano, X. C. Ma, F. Gao, R. E. Belford and T. T. Trier, Science 248, 199 (1990).

    Google Scholar 

  8. D. Gust, T. A. Moore, A. L. Moore, A. N. MacPherson, A. Lopez, J. M. DeGraziano, I. Gouni, E. Bittersman, G. R. Seely, F. Gao, R. A. Nieman, X. C. Ma, L. Demanche, S.-C. Hung, D. K. Luttrull, S.-J. Lee and P. K. Kerrigan, J.Am.Chem.Soc. 115, 11141 (1993).

    Google Scholar 

  9. M. R. Wasielewski, Chem.Rev. 92, 435 (1992).

    Google Scholar 

  10. P. Bonhôte, J.-E. Moser, H.-B. Robin, N. Vlachopoulos, S. M. Zakeeruddin, L. Walder and M. Grätzel, J.Am.Chem.Soc. 121, 1324 (1999).

    Google Scholar 

  11. U. Bach, Y. Tachibana, J.-E. Moser, S. A. Haque, J. R. Durrant, M. Grätzel and D. R. Klug, J.Am.Chem.Soc. 121, 7445 (1999).

    Google Scholar 

  12. R. D. Fossym and M. A. Fox, J.Am.Chem.Soc. 119, 1197 (1997).

    Google Scholar 

  13. L. N. Dupray, M. Devenney, D. R. Striplin and T. J. Meyer, J.Am.Chem.Soc. 119, 10243 (1997).

    Google Scholar 

  14. C. A. Slate, D. R. Striplin, J. A. Moss, P. Chen, B. W. Erickson and T. J. Meyer, J.Am.Chem.Soc. 120, 4885 (1998).

    Google Scholar 

  15. V. Alzani, S. Ampana, G. Denti, A. Juris, S. Serroni and M. Venturi, Acc.Chem.Res. 31, 26 (1998).

    Google Scholar 

  16. G. M. Stewart and M. A. Fox, J.Am.Chem.Soc. 118, 4354 (1996).

    Google Scholar 

  17. A. Slama-Schwok, D. Avnir and M. Ottilenghi, Nature 355, 240 (1992).

    Google Scholar 

  18. T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein and M. A. El-Sayed, Science 272, 1924 (1996).

    Google Scholar 

  19. C. J. Pederson, J.Am.Chem.Soc. 89, 7017 (1967).

    Google Scholar 

  20. D. Rehm and A. Weller, Isr.J.Chem. 8, 259 (1970).

    Google Scholar 

  21. A. Weller, Z.Phys.Chem. 76, 3132 (1972).

    Google Scholar 

  22. Y. Zhu and G. B. Schuster, J.Am.Chem.Soc. 115, 2190 (1993).

    Google Scholar 

  23. C.-H. Tung, L.-P. Zhang, Y. Li, H. Cao and Y. Tanimoto, J.Am.Chem.Soc. 119, 5348 (1997).

    Google Scholar 

  24. Q. H. Wu, B. W. Zhang, Y. F. Ming and Y. Cao, J.Photochem.Photobiol.A: Chem. 61, 53 (1991).

    Google Scholar 

  25. C.-H. Tung, L.-P. Zhang and Y. Li, J.Phys.Chem. 100, 4480 (1996).

    Google Scholar 

  26. X.-Y. Yi, L.-Z. Wu and C.-H. Tung, J.Phys.Chem.B 104, 9468 (2000).

    Google Scholar 

  27. G. J. Kavarnos and N. J. Turro, Chem.Rev. 86, 401 (1986).

    Google Scholar 

  28. M. Borja and P. K. Dutta, Nature 362, 43 (1993).

    Google Scholar 

  29. K. J. Donovan, R. V. Sudiwala and E. G. Wilson, Mol.Cryst.Liq.Cryst. 194, 3 (1991).

    Google Scholar 

  30. H.-X. Luo and N.-Q. Li, J.Phys.Chem.B 103, 4377 (1997).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, JY., Chen, B., Zhang, LP. et al. Photoelectric properties of Cz-Py-MV2+ monolayer films. Research on Chemical Intermediates 28, 517–526 (2002). https://doi.org/10.1163/15685670260373281

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1163/15685670260373281

Keywords

Navigation