Abstract

The present work is concerned with unsteady free convection flow of an incompressible electrically conducting micropolar fluid, bounded by an infinite vertical plane surface of constant temperature. A uniform magnetic field acts perpendicularly to the plane. The state space technique is adopted for the one-dimensional problems including heat sources with one relaxation time. The resulting formulation is applied to a problem for the whole space with a plane distribution of heat sources. The reflection method together with the solution obtained for the whole space is applied to a semispace problem with a plane distribution of heat sources located inside the fluid. The inversion of the Laplace transforms is carried out using a numerical approach. Numerical results for the temperature, the velocity, and the angular velocity distributions are given and illustrated graphically for the problems considered.