Abstract

We study the existence of positive solutions for second-order nonlinear differential equations with nonseparated boundary conditions. Our nonlinearity may be singular in its dependent variable. The proof of the main result relies on a nonlinear alternative principle of Leray-Schauder. Recent results in the literature are generalized and significantly improved.

1. Introduction

In this paper, we establish the positive periodic solutions for the following singular differential equation:βˆ’ξ€Ίπ‘(π‘₯)π‘¦ξ…žξ€»ξ€·β€²+π‘ž(π‘₯)𝑦=𝑓π‘₯,𝑦,π‘¦ξ…žξ€Έ,0≀π‘₯≀𝑇,(1.1) and boundary conditions𝑦(0)=𝑦(𝑇),𝑦[1](0)=𝑦[1](𝑇),(1.2) where 𝑝, π‘žβˆˆβ„‚(ℝ/𝑇℀), the nonlinearity π‘“βˆˆβ„‚((ℝ/𝑇℀)Γ—(0,∞)×ℝ,ℝ), and 𝑦[1](π‘₯)=𝑝(π‘₯)π‘¦ξ…ž(π‘₯) denotes the quasi-derivative of 𝑦(π‘₯). We call boundary conditions (1.2) the periodic boundary conditions which are important representatives of nonseparated boundary conditions. In particular, the nonlinearity may have a repulsive singularity at 𝑦=0, which means thatlim𝑦→0+𝑓(π‘₯,𝑦,𝑧)=+∞,uniformlyin(π‘₯,𝑧)βˆˆβ„2.(1.3) Also 𝑓 may take on negative values. Electrostatic or gravitational forces are the most important examples of singular interactions.

During the last few decades, the study of the existence of periodic solutions for singular differential equations have deserved the attention of many researchers [1–8]. Some classical tools have been used to study singular differential equations in the literature, including the degree theory [7–9], the method of upper and lower solutions [5, 10], Schauder’s fixed point theorem [2, 11, 12], some fixed point theorems in cones for completely continuous operators [13–15], and a nonlinear Leray-Schauder alternative principle [16–18].

However, the singular differential equation (1.1), in which the nonlinearity is dependent on the derivative and does not require 𝑓 to be nonnegative, has not attracted much attention in the literature. There are not so many existence results for (1.1) even when the nonlinearity is independent of the derivative. In this paper, we try to fill this gap and establish the existence of positive 𝑇-periodic solutions of (1.1); proof of the existence of positive solutions is based on an application of a nonlinear alternative of Leray-Schauder, which has been used by many authors [16–18].

The rest of this paper is organized as follows. In Section 2, some preliminary results will be given, including a famous nonlinear alternative of Leray-Schauder type. In Section 3, we will state and prove the main results.

2. Preliminaries

Let us denote 𝑒(𝑑) and 𝑣(𝑑) by the solutions of the following homogeneous equations:βˆ’ξ€Ίπ‘(π‘₯)π‘¦ξ…žξ€»β€²+π‘ž(π‘₯)𝑦=0,0≀π‘₯≀𝑇,(2.1) satisfying the initial conditions𝑒(0)=1,𝑒[1](0)=0,𝑣(0)=0,𝑣[1](0)=1,(2.2) and set𝐷=𝑒(𝑇)+𝑣[1](𝑇)βˆ’2.(2.3) Throughout this paper, we assume that (1.1) satisfies the following condition (2.4):ξ€œπ‘(π‘₯)>0,π‘ž(π‘₯)>0,𝑇01π‘ξ€œ(π‘₯)𝑑π‘₯<∞,𝑇0π‘ž(π‘₯)𝑑π‘₯<∞.(2.4)

Lemma 2.1 (see [19]). For the solution 𝑦(π‘₯) of the boundary value problem βˆ’ξ€Ίπ‘(π‘₯)π‘¦ξ…žξ€»β€²+π‘ž(π‘₯)𝑦=β„Ž(π‘₯),0≀π‘₯≀𝑇,𝑦(0)=𝑦(𝑇),𝑦[1](0)=𝑦[1](𝑇),(2.5) the formula ξ€œπ‘¦(π‘₯)=𝑇0[],𝐺(π‘₯,𝑠)β„Ž(𝑠)𝑑𝑠,π‘₯∈0,𝑇(2.6) holds, where 𝐺(π‘₯,𝑠)=𝑣(𝑇)𝐷𝑒𝑒(π‘₯)𝑒(𝑠)βˆ’[1](𝑇)𝐷+⎧βŽͺβŽͺ⎨βŽͺβŽͺβŽ©π‘£π‘£(π‘₯)𝑣(𝑠)[1](𝑇)βˆ’1𝐷𝑒(π‘₯)𝑣(𝑠)βˆ’π‘’(𝑇)βˆ’1𝐷𝑒𝑣(𝑠)𝑣(π‘₯),0≀𝑠≀π‘₯≀𝑇,[1](𝑇)βˆ’1𝐷𝑒(𝑠)𝑣(π‘₯)βˆ’π‘’(𝑇)βˆ’1𝐷𝑒(π‘₯)𝑣(𝑠),0≀π‘₯≀𝑠≀𝑇,(2.7) is the Green's function, and the number 𝐷 is defined by (2.3).

Lemma 2.2 (see [19]). Under condition (2.4), the Green’s function 𝐺(π‘₯,𝑠) of the boundary value problem (2.5) is positive, that is, 𝐺(π‘₯,𝑠)>0, for π‘₯,π‘ βˆˆ[0,𝑇].
One denotes 𝐴=min0≀𝑠,π‘₯≀𝑇𝐺(π‘₯,𝑠),𝐡=max0≀𝑠,π‘₯≀𝑇𝐴𝐺(π‘₯,𝑠),𝜎=𝐡.(2.8) Thus 𝐡>𝐴>0 and 0<𝜎<1.

Remark 2.3. If 𝑝(π‘₯)=1, π‘ž(π‘₯)=π‘š2>0, then the Green’s function 𝐺(π‘₯,𝑠) of the boundary value problem (2.5) has the form ⎧βŽͺβŽͺ⎨βŽͺβŽͺβŽ©π‘’πΊ(π‘₯,𝑠)=π‘š(π‘₯βˆ’π‘ )+π‘’π‘š(π‘‡βˆ’π‘₯+𝑠)𝑒2π‘šπ‘šπ‘‡ξ€Έπ‘’βˆ’1,0≀𝑠≀π‘₯≀𝑇,π‘š(π‘ βˆ’π‘₯)+π‘’π‘š(𝑇+π‘₯βˆ’π‘ )𝑒2π‘šπ‘šπ‘‡ξ€Έβˆ’1,0≀π‘₯≀𝑠≀𝑇.(2.9) It is obvious that 𝐺(π‘₯,𝑠)>0 for 0≀𝑠,π‘₯≀𝑇, and a direct calculation shows that 𝑒𝐴=π‘šπ‘‡/2π‘šξ€·π‘’π‘šπ‘‡ξ€Έβˆ’1,𝐡=1+π‘’π‘šπ‘‡ξ€·π‘’2π‘šπ‘šπ‘‡ξ€Έβˆ’1,𝜎=2π‘’π‘šπ‘‡/21+π‘’π‘šπ‘‡<1.(2.10)
Let 𝑋=β„‚[0,𝑇], and we suppose that 𝐹∢[0,𝑇]×ℝ×ℝ→[0,∞) is a continuous function. Define an operator: ξ€œ(𝑇𝑦)(π‘₯)=𝑇0𝐺(π‘₯,𝑠)𝐹(𝑠,𝑦(𝑠),𝑧(𝑠))𝑑𝑠(2.11) for π‘¦βˆˆπ‘‹ and π‘₯∈[0,𝑇]. It is easy to prove that 𝑇 is continuous and completely continuous.

3. Main Results

In this section, we state and prove the new existence results for (1.1). In order to prove our main results, the following nonlinear alternative of Leray-Schauder is needed, which can be found in [20]. Let us define the function βˆ«πœ”(π‘₯)=𝑇0𝐺(π‘₯,𝑠)𝑑𝑠. The usual 𝐿1-norm over (0,𝑇) is denoted by β€–β‹…β€–1,and the supremum norm of β„‚[0,𝑇] is denoted by β€–β‹…β€–.

Lemma 3.1. Assume Ξ© is a relatively compact subset of a convex set 𝐸 in a normed space 𝑋. Let π‘‡βˆΆΞ©β†’πΈ be a compact map with 0∈Ω. Then one of the following two conclusions holds:(i)𝑇 has at least one fixed point in Ξ©;(ii)there exist π‘’βˆˆπœ•Ξ© and 0<πœ†<1 such that 𝑒=πœ†π‘‡π‘’.

Now we present our main existence result of positive solution to problem (1.1).

Theorem 3.2. Suppose that (1.1) satisfies (2.4). Furthermore, assume that there exists a constant π‘Ÿ>0 such that(H1) there exists a constant 𝑀>0 such that 𝐹(π‘₯,𝑦,𝑧)=𝑓(π‘₯,𝑦,𝑧)+𝑀β‰₯0 for all (π‘₯,𝑦,𝑧)∈[0,𝑇]Γ—(0,π‘Ÿ]×ℝ;(H2) there exist continuous, nonnegative functions 𝑔(𝑦), β„Ž(𝑦), and 𝜚(𝑦) such that []]𝐹(π‘₯,𝑦,𝑧)≀(𝑔(𝑦)+β„Ž(𝑦))𝜚(|𝑧|),βˆ€(π‘₯,𝑦,𝑧)∈0,𝑇×(0,π‘ŸΓ—β„,(3.1) where 𝑔(𝑦)>0 is nonincreasing, β„Ž(𝑦)/𝑔(𝑦) is nondecreasing in (0,π‘Ÿ] and 𝜚(𝑦) is nondecreasing in (0,∞);(H3) there exist a nonincreasing positive continuous function 𝑔0(𝑦) on (0,∞), and a constant 𝑅0>0 such that 𝐹(π‘₯,𝑦,𝑧)β‰₯𝑔0(𝑦) for (π‘₯,𝑦,𝑧)∈[0,𝑇]Γ—(0,𝑅0]Γ—βˆž, where 𝑔0(𝑦) satisfies lim𝑦→0+𝑔0(𝑦)=+∞ and lim𝑦→0+βˆ«π‘…0𝑦𝑔0(𝑒)𝑑𝑒=+∞;(H4) the following inequalities hold: π‘ŸπœŽπ‘Ÿ>π‘€β€–πœ”β€–,𝐿𝑔(πœŽπ‘Ÿβˆ’π‘€β€–πœ”β€–){1+β„Ž(π‘Ÿ)/𝑔(π‘Ÿ)}𝜚1π‘Ÿ+𝐿2𝑇>β€–πœ”β€–,(3.2) where𝐿1=2β€–π‘žβ€–1/min0≀π‘₯≀𝑇𝑝(π‘₯),𝐿2=2𝑀/min0≀π‘₯≀𝑇𝑝(π‘₯).

Then (1.1) has at least one positive 𝑇-periodic solution 𝑦 with 0<‖𝑦+π‘€πœ”β€–β‰€π‘Ÿ.

Proof. Since (H4) holds, let 𝑁0={𝑛0,𝑛0+1,…}, and we can choose 𝑛0∈{1,2,…} such that 1/𝑛0<πœŽπ‘Ÿβˆ’π‘€β€–πœ”β€– and )ξ‚»β€–πœ”β€–π‘”(πœŽπ‘Ÿβˆ’π‘€β€–πœ”β€–1+β„Ž(π‘Ÿ)ξ‚Όπœšξ€·πΏπ‘”(π‘Ÿ)1π‘Ÿ+𝐿2𝑇+1𝑛0<π‘Ÿ.(3.3)
To show (1.1) has a positive solution, we should only show that βˆ’ξ€Ίπ‘(π‘₯)π‘¦ξ…žξ€»ξ€·β€²+π‘ž(π‘₯)𝑦=𝐹π‘₯,𝑦(π‘₯)βˆ’π‘€πœ”(π‘₯),π‘¦ξ…ž(π‘₯)βˆ’π‘€πœ”ξ…žξ€Έ(π‘₯)(3.4) has a positive solution 𝑦 satisfying (1.2). If it is right, then π‘˜(π‘₯)=𝑦(π‘₯)βˆ’π‘€πœ”(π‘₯) is a solution of (1.1) since βˆ’ξ€Ίπ‘(π‘₯)π‘˜ξ…žξ€»ξ€Ίβ€²+π‘ž(π‘₯)π‘˜=βˆ’π‘(π‘₯)(𝑦(π‘₯)βˆ’π‘€πœ”(π‘₯))ξ…žξ€»ξ…žξ€·+π‘ž(π‘₯)(𝑦(π‘₯)βˆ’π‘€πœ”(π‘₯))=𝐹π‘₯,𝑦(π‘₯)βˆ’π‘€πœ”(π‘₯),π‘¦ξ…ž(π‘₯)βˆ’π‘€πœ”ξ…žξ€Έξ€·(π‘₯)βˆ’π‘€=𝑓π‘₯,𝑦(π‘₯)βˆ’π‘€πœ”(π‘₯),π‘¦ξ…ž(π‘₯)βˆ’π‘€πœ”ξ…žξ€Έξ€·(π‘₯)=𝑓π‘₯,π‘˜(π‘₯),π‘˜ξ…žξ€Έ,(π‘₯)(3.5) where βˆ’[𝑝(π‘₯)πœ”ξ…ž(π‘₯)]β€²+π‘ž(π‘₯)πœ”(π‘₯)=1 is used.
Consider the family of equations: βˆ’ξ€Ίπ‘(π‘₯)π‘¦ξ…žξ€»β€²+π‘ž(π‘₯)𝑦=πœ†πΉπ‘›ξ€·π‘₯,𝑦(π‘₯)βˆ’π‘€πœ”(π‘₯),π‘¦ξ…ž(π‘₯)βˆ’π‘€πœ”ξ…ž(ξ€Έ+π‘₯)π‘ž(π‘₯)𝑛,(3.6) where πœ†βˆˆ[0,1],π‘›βˆˆπ‘0, and πΉπ‘›βŽ§βŽͺ⎨βŽͺ⎩1(π‘₯,𝑦,𝑧)=𝐹(π‘₯,𝑦,𝑧)if𝑦β‰₯𝑛,𝐹1π‘₯,𝑛1,𝑧if𝑦≀𝑛.(3.7) Problem (3.6)βˆ’(1.2) is equivalent to the following fixed point of the operator equation: 𝑦=𝑇𝑛𝑦,(3.8) where 𝑇𝑛 is a continuous and completely continuous operator defined by π‘‡π‘›ξ€œπ‘¦(π‘₯)=πœ†π‘‡0𝐺(π‘₯,𝑠)𝐹𝑛𝑠,𝑦(𝑠)βˆ’π‘€πœ”(𝑠),π‘¦ξ…ž(𝑠)βˆ’π‘€πœ”ξ…žξ€Έ1(𝑠)𝑑𝑠+𝑛,(3.9) and we used the fact ξ€œπ‘‡0𝐺(π‘₯,𝑠)π‘ž(𝑠)𝑑𝑠≑1(seeLemma2.1withβ„Ž=π‘ž).(3.10)
Now we show β€–π‘¦β€–β‰ π‘Ÿ for any fixed point 𝑦 of (3.8). If not, assume that 𝑦 is a fixed point of (3.8) such that ‖𝑦‖=π‘Ÿ. Note that 1𝑦(π‘₯)βˆ’π‘›ξ€œ=πœ†π‘‡0𝐺(π‘₯,𝑠)𝐹𝑛𝑠,𝑦(𝑠)βˆ’π‘€πœ”(𝑠),π‘¦ξ…ž(𝑠)βˆ’π‘€πœ”ξ…žξ€Έξ€œ(𝑠)𝑑𝑠β‰₯πœ†π΄π‘‡0𝐹𝑛𝑠,𝑦(𝑠)βˆ’π‘€πœ”(𝑠),π‘¦ξ…ž(𝑠)βˆ’π‘€πœ”ξ…žξ€Έξ€œ(𝑠)𝑑𝑠=πœŽπ΅πœ†π‘‡0𝐹𝑛𝑠,𝑦(𝑠)βˆ’π‘€πœ”(𝑠),π‘¦ξ…ž(𝑠)βˆ’π‘€πœ”ξ…žξ€Έ(𝑠)𝑑𝑠β‰₯𝜎max[]π‘₯∈0,π‘‡ξ‚»πœ†ξ€œπ‘‡0𝐺(π‘₯,𝑠)𝐹𝑛𝑠,𝑦(𝑠)βˆ’π‘€πœ”(𝑠),π‘¦ξ…ž(𝑠)βˆ’π‘€πœ”ξ…ž(ξ€Έξ‚Όβ€–β€–β€–1𝑠)𝑑𝑠=πœŽπ‘¦βˆ’π‘›β€–β€–β€–.(3.11) So we have β€–β€–β€–1𝑦(π‘₯)β‰₯πœŽπ‘¦βˆ’π‘›β€–β€–β€–+1𝑛1β‰₯πœŽβ€–π‘¦β€–βˆ’π‘›ξ‚+1𝑛β‰₯πœŽπ‘Ÿ,for0≀π‘₯≀𝑇.(3.12) In order to pass the solutions of the truncation equation (3.6) (with πœ†=1) to that of the original equation (3.4), we need the fact that β€–π‘¦ξ…žβ€– is bounded. Now we show that β€–β€–π‘¦ξ…žβ€–β€–β‰€πΏ1π‘Ÿ(3.13) for a solution 𝑦(π‘₯) of (3.6).
Integrating (3.6) from 0 to 𝑇 (with πœ†=1), we obtain ξ€œπ‘‡0ξ€œπ‘ž(π‘₯)𝑦(π‘₯)𝑑π‘₯=𝑇0𝐹𝑛π‘₯,𝑦(π‘₯)βˆ’π‘€πœ”(π‘₯),π‘¦ξ…ž(π‘₯)βˆ’π‘€πœ”ξ…žξ€Έ+(π‘₯)π‘ž(π‘₯)𝑛𝑑π‘₯.(3.14) Since 𝑦(0)=𝑦(𝑇), there exists π‘₯0∈[0,𝑇] such that π‘¦ξ…ž(π‘₯0)=0; therefore, ||𝑝(π‘₯)π‘¦ξ…ž||=||||ξ€œ(π‘₯)π‘₯π‘₯0𝑝(𝑠)π‘¦ξ…žξ€Έ||||=||||ξ€œ(𝑠)′𝑑𝑠π‘₯π‘₯0ξ‚Έπ‘ž(𝑠)𝑦(𝑠)βˆ’πΉπ‘›ξ€·π‘ ,𝑦(𝑠)βˆ’π‘€πœ”(𝑠),π‘¦ξ…ž(𝑠)βˆ’π‘€πœ”ξ…ž(ξ€Έβˆ’π‘ )π‘ž(𝑠)𝑛||||β‰€ξ€œπ‘‘π‘ π‘‡0ξ‚Έπ‘ž(𝑠)𝑦(𝑠)+𝐹𝑛𝑠,𝑦(𝑠)βˆ’π‘€πœ”(𝑠),π‘¦ξ…ž(𝑠)βˆ’π‘€πœ”ξ…žξ€Έ+(𝑠)π‘ž(𝑠)π‘›ξ‚Ήξ€œπ‘‘π‘ =2𝑇0ξ€œπ‘ž(𝑠)𝑦(𝑠)𝑑𝑠≀2π‘Ÿπ‘‡0π‘ž(𝑠)𝑑𝑠.(3.15) So, ||π‘¦ξ…ž(||β‰€βˆ«π‘₯)2π‘Ÿπ‘‡0π‘ž(𝑠)𝑑𝑠≀𝑝(π‘₯)2π‘Ÿβ€–π‘žβ€–1min0≀π‘₯≀𝑇𝑝(π‘₯)∢=𝐿1π‘Ÿ.(3.16) Similarly we have ||πœ”ξ…ž||≀(π‘₯)2𝑇min0≀π‘₯≀𝑇𝑝(π‘₯).(3.17)
By (3.12), we obtain 𝑦(π‘₯)βˆ’π‘€πœ”(π‘₯)β‰₯πœŽπ‘Ÿβˆ’π‘€πœ”(π‘₯)β‰₯πœŽπ‘Ÿβˆ’π‘€β€–πœ”β€–>1/𝑛0β‰₯1/𝑛. Thus from condition (H2) ξ€œπ‘¦(π‘₯)=πœ†π‘‡0𝐺(π‘₯,𝑠)𝐹𝑛𝑠,𝑦(𝑠)βˆ’π‘€πœ”(𝑠),π‘¦ξ…ž(𝑠)βˆ’π‘€πœ”ξ…žξ€Έ1(𝑠)𝑑𝑠+π‘›ξ€œ=πœ†π‘‡0𝐺(π‘₯,𝑠)𝐹𝑠,𝑦(𝑠)βˆ’π‘€πœ”(𝑠),π‘¦ξ…ž(𝑠)βˆ’π‘€πœ”ξ…žξ€Έ1(𝑠)𝑑𝑠+π‘›β‰€ξ€œπ‘‡0𝐺(π‘₯,𝑠)𝐹𝑠,𝑦(𝑠)βˆ’π‘€πœ”(𝑠),π‘¦ξ…ž(𝑠)βˆ’π‘€πœ”ξ…žξ€Έ1(𝑠)𝑑𝑠+π‘›β‰€ξ€œπ‘‡0𝐺(π‘₯,𝑠)𝑔(𝑦(𝑠)βˆ’π‘€πœ”(𝑠))1+β„Ž(𝑦(𝑠)βˆ’π‘€πœ”(𝑠))ξ‚Όπœšξ€·||𝑦𝑔(𝑦(𝑠)βˆ’π‘€πœ”(𝑠))ξ…ž(||||πœ”π‘ )+π‘€ξ…ž(||ξ€Έ1𝑠)𝑑𝑠+𝑛≀𝑔(πœŽπ‘Ÿβˆ’π‘€β€–πœ”β€–))1+β„Ž(π‘Ÿ)π‘”ξ‚Όπœšξ€·πΏ(π‘Ÿ)1π‘Ÿ+𝐿2π‘‡ξ€Έξ€œπ‘‡01𝐺(𝑑,𝑠)𝑑𝑠+𝑛≀𝑔(πœŽπ‘Ÿβˆ’π‘€β€–πœ”β€–))1+β„Ž(π‘Ÿ)ξ‚Όπœšξ€·πΏπ‘”(π‘Ÿ)1π‘Ÿ+𝐿2𝑇1β€–πœ”β€–+𝑛0.(3.18) Therefore, )ξ‚»π‘Ÿ=‖𝑦‖≀𝑔(πœŽπ‘Ÿβˆ’π‘€β€–πœ”β€–1+β„Ž(π‘Ÿ)ξ‚Όπœšξ€·πΏπ‘”(π‘Ÿ)1π‘Ÿ+𝐿2𝑇1β€–πœ”β€–+𝑛0.(3.19) This is a contradiction, so β€–π‘¦β€–β‰ π‘Ÿ.
Using Lemma 3.1, we know that 𝑦=𝑇𝑛𝑦(3.20) has a fixed point, denoted by 𝑦𝑛, that is, equation βˆ’ξ€Ίπ‘(π‘₯)π‘¦ξ…žξ€»β€²+π‘ž(π‘₯)𝑦=𝐹𝑛π‘₯,𝑦(π‘₯)βˆ’π‘€πœ”(π‘₯),π‘¦ξ…ž(π‘₯)βˆ’π‘€πœ”ξ…ž(ξ€Έ+π‘₯)π‘ž(π‘₯)𝑛(3.21) has a periodic solution 𝑦𝑛 with ‖𝑦𝑛‖<π‘Ÿ. Using similar procedure to that of the proof of (3.13), we can prove that β€–β€–π‘¦ξ…žπ‘›β€–β€–β‰€πΏ1π‘Ÿ.(3.22) In the next lemma, we will show that 𝑦𝑛(π‘₯)βˆ’π‘€πœ”(π‘₯) have a uniform positive lower bound, that is, there exists a constant 𝛿>0, independent of π‘›βˆˆπ‘0, such that 𝑦𝑛(π‘₯)βˆ’π‘€πœ”(π‘₯)β‰₯𝛿(3.23) for all π‘›βˆˆπ‘0.
The fact ‖𝑦𝑛‖<π‘Ÿ and β€–π‘¦ξ…žπ‘›β€–β‰€πΏ1π‘Ÿ shows that {𝑦𝑛}π‘›βˆˆπ‘0 is a bounded and equi-continuous family on [0,𝑇]. Thus the Arzela–Ascoli Theorem guarantees that {𝑦𝑛}π‘›βˆˆπ‘0 has a subsequence,{𝑦𝑛𝑖}π‘–βˆˆβ„• converging uniformly on [0,𝑇] to a function π‘¦βˆˆπ‘‹. 𝐹 is uniformly continuous since 𝑦𝑛 satisfies 𝛿+π‘€πœ”(π‘₯)≀𝑦𝑛(π‘₯)β‰€π‘Ÿ for all π‘₯∈[0,𝑇]. Moreover, 𝑦𝑛𝑖 satisfies the integral equation π‘¦π‘›π‘–ξ€œ(π‘₯)=𝑇0𝐺(π‘₯,𝑠)𝐹𝑛𝑠,𝑦𝑛𝑖(𝑠)βˆ’π‘€πœ”(𝑠),π‘¦ξ…žπ‘›π‘–(𝑠)βˆ’π‘€πœ”ξ…žξ€Έ1(𝑠)𝑑𝑠+𝑛𝑖.(3.24) Letting π‘–β†’βˆž, we arrive at ξ€œπ‘¦(π‘₯)=𝑇0𝐺(π‘₯,𝑠)𝐹𝑛𝑠,𝑦(𝑠)βˆ’π‘€πœ”(𝑠),π‘¦ξ…ž(𝑠)βˆ’π‘€πœ”ξ…žξ€Έ(𝑠)𝑑𝑠.(3.25) Therefore, 𝑦 is a positive periodic solution of (1.1) and satisfies 0<‖𝑦+π‘€πœ”β€–β‰€π‘Ÿ.

Lemma 3.3. There exists a constant 𝛿>0 such that any solution 𝑦𝑛 of (3.6) (with πœ†=1) satisfies (3.23) for all 𝑛 large enough.

Proof. By condition (H3), there exist 𝑅1∈(0,𝑅0) and a continuous function ̃𝑔0 such that 𝐹π‘₯,𝑦,π‘¦ξ…žξ€Έβˆ’π‘ž(π‘₯)𝑦β‰₯̃𝑔0}(𝑦)β‰₯max{𝑀,π‘Ÿβ€–π‘žβ€–(3.26) for all (π‘₯,𝑦)∈[0,𝑇]Γ—(0,𝑅1], where ̃𝑔0 satisfies condition also like in (H3).
Choose 𝑛1βˆˆπ‘0 such that 1/𝑛1≀𝑅1, and let 𝑁1={𝑛1,𝑛1+1,…}. For π‘›βˆˆπ‘1, let 𝛼𝑛=min0≀π‘₯≀𝑇𝑦𝑛(π‘₯)βˆ’π‘€πœ”(π‘₯),𝛽𝑛=max0≀π‘₯≀𝑇𝑦𝑛.(π‘₯)βˆ’π‘€πœ”(π‘₯)(3.27) We first show that 𝛽𝑛>𝑅1 for all π‘›βˆˆπ‘1. If not, assume that 𝛽𝑛≀𝑅1 for some π‘›βˆˆπ‘1.
If 1/𝑛≀𝑦𝑛(π‘₯)βˆ’π‘€πœ”(π‘₯)≀𝑅1, we obtain from (3.26) 𝐹𝑛π‘₯,𝑦𝑛(π‘₯)βˆ’π‘€πœ”(π‘₯),π‘¦ξ…žπ‘›(π‘₯)βˆ’π‘€πœ”ξ…žξ€Έξ€·(π‘₯)=𝐹π‘₯,𝑦𝑛(π‘₯)βˆ’π‘€πœ”(π‘₯),π‘¦ξ…žπ‘›(π‘₯)βˆ’π‘€πœ”ξ…žξ€Έξ€·π‘¦(π‘₯)β‰₯π‘ž(π‘₯)𝑛(ξ€Έπ‘₯)βˆ’π‘€πœ”(π‘₯)+̃𝑔0𝑦𝑛(ξ€Έπ‘₯)βˆ’π‘€πœ”(π‘₯)β‰₯̃𝑔0𝑦𝑛(π‘₯)βˆ’π‘€πœ”(π‘₯)>π‘Ÿβ€–π‘žβ€–,(3.28) and, if 𝑦𝑛(π‘₯)βˆ’π‘€πœ”(π‘₯)≀1/𝑛, we obtain 𝐹𝑛π‘₯,𝑦𝑛(π‘₯)βˆ’π‘€πœ”(π‘₯),π‘¦ξ…žπ‘›(ξ€Έξ‚€1π‘₯)=𝐹π‘₯,𝑛,π‘¦ξ…žπ‘›(β‰₯π‘₯)π‘ž(π‘₯)𝑛+̃𝑔0ξ‚€1𝑛β‰₯̃𝑔0ξ‚€1𝑛>π‘Ÿβ€–π‘žβ€–.(3.29) So we have 𝐹𝑛π‘₯,𝑦𝑛(π‘₯)βˆ’π‘€πœ”(π‘₯),π‘¦ξ…žπ‘›(π‘₯)βˆ’π‘€πœ”ξ…žξ€Έ(π‘₯)>π‘Ÿβ€–π‘žβ€–,for𝛽𝑛≀𝑅1.(3.30) Integrating (3.6) (with πœ†=1) from 0 to 𝑇, we deduce thatξ€œ0=𝑇0ξ‚΅βˆ’ξ€Ίπ‘(π‘₯)π‘¦ξ…žπ‘›ξ€»(π‘₯)β€²+π‘ž(π‘₯)𝑦𝑛(π‘₯)βˆ’πΉπ‘›ξ€·π‘₯,𝑦𝑛(π‘₯)βˆ’π‘€πœ”(π‘₯),π‘¦ξ…žπ‘›(π‘₯)βˆ’π‘€πœ”ξ…žξ€Έβˆ’(π‘₯)π‘ž(π‘₯)𝑛=ξ€œπ‘‘π‘₯𝑇0ξ€·π‘¦π‘ž(π‘₯)𝑛1(π‘₯)𝑑π‘₯βˆ’π‘›ξ€œπ‘‡0ξ€œπ‘ž(π‘₯)𝑑π‘₯βˆ’π‘‡0𝐹𝑛π‘₯,𝑦𝑛(π‘₯)βˆ’π‘€πœ”(π‘₯),π‘¦ξ…žπ‘›(π‘₯)βˆ’π‘€πœ”ξ…žξ€Έ<ξ€œ(π‘₯)𝑑π‘₯𝑇0π‘ž(π‘₯)𝑦𝑛(π‘₯)𝑑π‘₯βˆ’π‘Ÿβ€–π‘žβ€–π‘‡β‰€0.(3.31) This is a contradiction. Thus 𝛽𝑛>𝑅1, and we have β€–β€–π‘¦π‘›β€–β€–βˆ’π‘€πœ”>𝑅1,βˆ€π‘›βˆˆπ‘1.(3.32)
To prove (3.23), we first show 𝑦𝑛1(π‘₯)β‰₯π‘€πœ”(π‘₯)+𝑛,0≀π‘₯≀𝑇forπ‘›βˆˆπ‘1.(3.33)
Let 𝑁1=𝑃βˆͺ𝑄; here 𝛼𝑛β‰₯𝑅1 if π‘›βˆˆπ‘ƒ, and 𝛼𝑛<𝑅1 if π‘›βˆˆπ‘„. If π‘›βˆˆπ‘ƒ, it is easy to verify (3.33) is satisfied. We now show (3.33) holds if π‘›βˆˆπ‘„. If not, suppose there exists π‘›βˆˆπ‘„ with 𝛼𝑛=min0≀π‘₯≀𝑇𝑦𝑛(π‘₯)βˆ’π‘€πœ”(π‘₯)=π‘¦π‘›ξ€·π‘π‘›ξ€Έξ€·π‘βˆ’π‘€πœ”π‘›ξ€Έ<1𝑛(3.34) for some π‘π‘›βˆˆ[0,𝑇]. As 𝛼𝑛=𝑦𝑛(𝑐𝑛)βˆ’π‘€πœ”(𝑐𝑛)<𝑅1, by 𝛽𝑛>𝑅1, there exists π‘π‘›βˆˆ[0,𝑇] (without loss of generality, we assume π‘Žπ‘›<𝑐𝑛) such that 𝑦𝑛(π‘Žπ‘›)=π‘€πœ”(π‘Žπ‘›)+𝑅1 and 𝑦𝑛(π‘₯)β‰€π‘€πœ”(π‘₯)+𝑅1 for π‘Žπ‘›β‰€π‘₯≀𝑐𝑛.
From (3.26), we easily show that 𝐹𝑛π‘₯,𝑦(π‘₯)βˆ’π‘€πœ”(π‘₯),π‘¦ξ…ž(π‘₯)βˆ’π‘€πœ”ξ…žξ€Έξ€·π‘¦(π‘₯)>π‘ž(π‘₯)π‘›ξ€Έξ€Ίπ‘Ž(π‘₯)βˆ’π‘€πœ”(π‘₯)+𝑀forπ‘₯βˆˆπ‘›,𝑐𝑛.(3.35)
Using (3.6) (with πœ†=1) for 𝑦𝑛(π‘₯), we have, for π‘₯∈[π‘Žπ‘›,𝑐𝑛], ξ€Ίξ€·π‘¦βˆ’π‘(π‘₯)ξ…žπ‘›(π‘₯)βˆ’π‘€πœ”ξ…žξ€Ίπ‘ξ€·π‘¦(π‘₯)ξ€Έξ€»β€²=βˆ’(π‘₯)ξ…žπ‘›ξ€Ίπ‘ξ€·πœ”(π‘₯)ξ€Έξ€»β€²+𝑀(π‘₯)ξ…žβ€²(π‘₯)ξ€Έξ€»=βˆ’π‘ž(π‘₯)𝑦𝑛(π‘₯)+𝐹𝑛π‘₯,𝑦𝑛(π‘₯)βˆ’π‘€πœ”(π‘₯),π‘¦ξ…žπ‘›(π‘₯)βˆ’π‘€πœ”ξ…ž(ξ€Έ+π‘₯)π‘ž(π‘₯)𝑛[]βˆ’π‘€1βˆ’π‘ž(π‘₯)πœ”(π‘₯)>βˆ’π‘ž(π‘₯)𝑦𝑛𝑦(π‘₯)+π‘ž(π‘₯)𝑛+(π‘₯)βˆ’π‘€πœ”(π‘₯)+π‘€π‘ž(π‘₯)𝑛[]=βˆ’π‘€1βˆ’π‘ž(π‘₯)πœ”(π‘₯)π‘ž(π‘₯)𝑛β‰₯0.(3.36)
As π‘¦ξ…žπ‘›(𝑐𝑛)βˆ’π‘€πœ”ξ…ž(𝑐𝑛)=0, 𝑝(π‘₯)>0, so π‘¦ξ…žπ‘›(π‘₯)βˆ’π‘€πœ”ξ…ž(π‘₯)<0 for all π‘₯∈[π‘Žπ‘›,𝑐𝑛), and the function πœˆπ‘›βˆΆ=π‘¦π‘›βˆ’π‘€πœ” is strictly decreasing on [π‘Žπ‘›,𝑐𝑛]. We use πœ‚π‘› to denote the inverse function of 𝑦𝑛 restricted to [π‘Žπ‘›,𝑐𝑛]. Thus there exists π‘π‘›βˆˆ(π‘Žπ‘›,𝑐𝑛) such that 𝑦𝑛(𝑏𝑛)βˆ’π‘€πœ”(𝑏𝑛)=1/𝑛 and 𝑦𝑛1(π‘₯)βˆ’π‘€πœ”(π‘₯)≀𝑛for𝑐𝑛β‰₯π‘₯β‰₯𝑏𝑛,1𝑛≀𝑦𝑛(π‘₯)βˆ’π‘€πœ”(π‘₯)≀𝑅1for𝑏𝑛β‰₯π‘₯β‰₯π‘Žπ‘›.(3.37) By using the method of substitution, we obtain ξ€œπ‘…11/π‘›πΉξ€·πœ‚π‘›(𝜈),𝜈,πœˆξ…žξ€Έξ€œπ‘‘πœˆ=π‘Žπ‘›π‘π‘›πΉξ€·π‘₯,𝑦𝑛(π‘₯)βˆ’π‘€πœ”(π‘₯),π‘¦ξ…žπ‘›(π‘₯)βˆ’π‘€πœ”ξ…žπ‘¦(π‘₯)ξ€Έξ€·ξ…žπ‘›(π‘₯)βˆ’π‘€πœ”ξ…žξ€Έ=ξ€œ(π‘₯)𝑑π‘₯π‘Žπ‘›π‘π‘›πΉπ‘›ξ€·π‘₯,𝑦𝑛(π‘₯)βˆ’π‘€πœ”(π‘₯),π‘¦ξ…žπ‘›(π‘₯)βˆ’π‘€πœ”ξ…žπ‘¦(π‘₯)ξ€Έξ€·ξ…žπ‘›(π‘₯)βˆ’π‘€πœ”ξ…žξ€Έ=ξ€œ(π‘₯)𝑑π‘₯π‘Žπ‘›π‘π‘›ξ‚΅βˆ’ξ€Ίξ€·π‘¦π‘(π‘₯)ξ…žπ‘›(π‘₯)ξ€Έξ€»ξ…ž+π‘ž(π‘₯)π‘¦ξ…žπ‘›(π‘₯)βˆ’π‘ž(π‘₯)π‘›ξ‚Άξ€·π‘¦ξ…žπ‘›(π‘₯)βˆ’π‘€πœ”ξ…žξ€Έ=ξ€œ(π‘₯)𝑑π‘₯π‘Žπ‘›π‘π‘›ξ‚€βˆ’ξ€Ίξ€·π‘¦π‘(π‘₯)ξ…žπ‘›(π‘₯)ξ€Έξ€»ξ…žξ‚ξ€·π‘¦ξ…žπ‘›(π‘₯)βˆ’π‘€πœ”ξ…žξ€Έ+ξ€œ(π‘₯)𝑑π‘₯π‘Žπ‘›π‘π‘›ξ‚΅π‘ž(π‘₯)𝑦𝑛(π‘₯)βˆ’π‘ž(π‘₯)π‘›ξ‚Άξ€·π‘¦ξ…žπ‘›(π‘₯)βˆ’π‘€πœ”ξ…žξ€Έ(π‘₯)𝑑π‘₯.(3.38) By the facts ‖𝑦𝑛‖<π‘Ÿ, β€–π‘¦ξ…žπ‘›β€– and β€–πœ”β€²β€– are bounded, one can easily obtain that the second term is bounded. The first term is π‘ξ€·π‘π‘›π‘¦ξ€Έξ€Ίξ…žπ‘›ξ€·π‘π‘›ξ€Έξ€»2ξ€·π‘Žβˆ’π‘π‘›π‘¦ξ€Έξ€Ίξ…žπ‘›ξ€·π‘Žπ‘›ξ€Έξ€»2ξ€·π‘Ž+π‘€π‘π‘›ξ€Έπ‘¦ξ…žπ‘›ξ€·π‘Žπ‘›ξ€Έπœ”ξ…žξ€·π‘Žπ‘›ξ€Έξ€·π‘βˆ’π‘€π‘π‘›ξ€Έπ‘¦ξ…žπ‘›ξ€·π‘π‘›ξ€Έπœ”ξ…žξ€·π‘π‘›ξ€Έ+ξ€œπ‘Žπ‘›π‘π‘›π‘(π‘₯)π‘¦ξ…žπ‘›(π‘₯)π‘¦π‘›ξ…žξ…žξ€œ(π‘₯)𝑑π‘₯βˆ’π‘€π‘Žπ‘›π‘π‘›π‘(π‘₯)π‘¦ξ…žπ‘›(π‘₯)πœ”ξ…žξ…ž(π‘₯)𝑑π‘₯,(3.39) which is also bounded. As a consequence, there exists 𝐿>0 such that ξ€œπ‘…11/π‘›πΉξ€·πœ‚π‘›(𝑦),𝑦,π‘¦ξ…žξ€Έπ‘‘π‘¦β‰€πΏ.(3.40)
On the other hand, by (H3), we can choose 𝑛2βˆˆπ‘1 large enough such that ξ€œπ‘…11/π‘›πΉξ€·πœ‚π‘›(𝑦),𝑦,π‘¦ξ…žξ€Έξ€œπ‘‘π‘¦β‰₯𝑅11/𝑛𝑔0(𝑦)𝑑𝑦>𝐿(3.41) for all π‘›βˆˆπ‘2={𝑛2,𝑛2+1,…}. This is a contradiction. So (3.33) holds.
Finally, we will show that (3.23) is right in π‘›βˆˆπ‘„. Noticing estimate (3.33) and employing the method of substitution, we obtain ξ€œπ‘…1π›Όπ‘›πΉξ€·πœ‚π‘›(𝑦),𝑦,π‘¦ξ…žξ€Έξ€œπ‘‘π‘¦=π‘Žπ‘›π‘π‘›πΉξ€·π‘₯,𝑦𝑛(π‘₯)βˆ’π‘€πœ”(π‘₯),π‘¦ξ…žπ‘›(π‘₯)βˆ’π‘€πœ”ξ…žπ‘¦(π‘₯)ξ€Έξ€·ξ…žπ‘›(π‘₯)βˆ’π‘€πœ”ξ…žξ€Έ=ξ€œ(π‘₯)𝑑π‘₯π‘Žπ‘›π‘π‘›πΉπ‘›ξ€·π‘₯,𝑦𝑛(π‘₯)βˆ’π‘€πœ”(π‘₯),π‘¦ξ…žπ‘›(π‘₯)βˆ’π‘€πœ”ξ…žπ‘¦(π‘₯)ξ€Έξ€·ξ…žπ‘›(π‘₯)βˆ’π‘€πœ”ξ…žξ€Έ=ξ€œ(π‘₯)𝑑π‘₯π‘Žπ‘›π‘π‘›ξ‚΅βˆ’ξ€Ίπ‘(π‘₯)π‘¦ξ…žπ‘›ξ€»(π‘₯)ξ…ž+π‘ž(π‘₯)𝑦𝑛(π‘₯)βˆ’π‘ž(π‘₯)π‘›ξ‚Άξ€·π‘¦ξ…žπ‘›(π‘₯)βˆ’π‘€πœ”ξ…žξ€Έ(π‘₯)𝑑π‘₯.(3.42) Obviously, the right-hand side of the above equality is bounded. On the other hand, by (H3), ξ€œπ‘…1π›Όπ‘›πΉξ€·πœ‚π‘›(𝑦),𝑦,π‘¦ξ…žξ€Έξ€œπ‘‘π‘¦β‰₯𝑅1𝛼𝑛𝑔0(𝑦)π‘‘π‘¦βŸΆ+∞(3.43) if 𝛼𝑛→0+. Thus we know that 𝛼𝑛β‰₯𝛿 for some constant 𝛿>0; the proof is completed.

Corollary 3.4. Let the nonlinearity in (1.1) be 𝑓(π‘₯,𝑦,𝑧)=(1+|𝑧|𝛾)ξ€·π‘¦βˆ’π›Ό+πœ‡π‘¦π›½ξ€Έ+𝑒(π‘₯),0≀π‘₯≀𝑇,(3.44) where 𝛼>0, 𝛽, 𝛾β‰₯0, 𝑒(π‘₯)βˆˆβ„‚[0,𝑇], and πœ‡>0 is a positive parameter,(i)if 𝛽+𝛾<1, then (1.1) has at least one positive periodic solution for each πœ‡>0;(ii)if 𝛽+𝛾β‰₯1, then (1.1) has at least one positive periodic solution for each 0<πœ‡<πœ‡βˆ—, where πœ‡βˆ— is some positive constant.

Proof. We will apply Theorem 3.2. Take 𝑀=𝑒0=max0≀π‘₯≀𝑇||||𝑒(π‘₯),𝑔(𝑦)=π‘¦βˆ’π›Ό,β„Ž(𝑦)=πœ‡π‘¦π›½+2𝑒0,𝜚(𝑧)=1+|𝑧|𝛾.(3.45) Then conditions (H1)–(H3) are satisfied and the existence condition (H4) becomes πœ‡<π‘Ÿ(πœŽπ‘Ÿβˆ’π‘€β€–πœ”β€–)π›Όξ€·ξ€·πΏβˆ’β€–πœ”β€–1+1π‘Ÿ+𝐿2π‘‡ξ€Έπ›Ύξ€Έβˆ’2𝑒0β€–πœ”β€–π‘Ÿπ›Όξ€·ξ€·πΏ1+1π‘Ÿ+𝐿2π‘‡ξ€Έπ›Ύξ€Έπ‘Ÿπ›Ό+π›½ξ€·ξ€·πΏβ€–πœ”β€–1+1π‘Ÿ+𝐿2𝑇𝛾(3.46) for some π‘Ÿ>0. So (1.1) has at least one positive periodic solution for 0<πœ‡<πœ‡βˆ—βˆΆ=supπ‘Ÿ>0π‘Ÿ(πœŽπ‘Ÿβˆ’π‘€β€–πœ”β€–)π›Όξ€·ξ€·πΏβˆ’β€–πœ”β€–1+1π‘Ÿ+𝐿2π‘‡ξ€Έπ›Ύξ€Έβˆ’2𝑒0β€–πœ”β€–π‘Ÿπ›Όξ€·ξ€·πΏ1+1π‘Ÿ+𝐿2π‘‡ξ€Έπ›Ύξ€Έπ‘Ÿπ›Ό+π›½ξ€·ξ€·πΏβ€–πœ”β€–1+1π‘Ÿ+𝐿2𝑇𝛾.(3.47) Note that πœ‡βˆ—=∞ if 𝛽+𝛾<1 and πœ‡βˆ—<∞ if 𝛽+𝛾β‰₯1. We have (i) and (ii).

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant no. 11161017) and Hainan Natural Science Foundation (Grant no. 111002).