Abstract

In a distributed environment, where a large number of computers are connected together to enable the large-scale sharing of data and computing resources, agents, especially mobile agents, are the tools for autonomously completing tasks on behalf of their owners. For applications of large-scale mobile agents, security and efficiency are of great concern. In this paper, we present a fast binary dispatch model and corresponding secure route structures for mobile agents dispatched in parallel to protect the dispatch routes of agents while ensuring the dispatch efficiency. The fast binary dispatch model is simple but efficient with a dispatch complexity of O(log2n. The secure route structures adopt the combination of public-key encryption and digital signature schemes and expose minimal route information to hosts. The nested structure can help detect attacks as early as possible. We evaluated the various models both analytically and empirically.