Abstract

we establish a recurrence formula for 𝐷 numbers 𝐷(2𝑛1)2𝑛. A generating function for 𝐷 numbers 𝐷(2𝑛1)2𝑛 is also presented.

1. Introduction and Results

The Bernoulli polynomials 𝐵𝑛(𝑘)(𝑥) of order 𝑘, for any integer 𝑘, may be defined by (see [14])

𝑡𝑒𝑡1𝑘𝑒𝑥𝑡=𝑛=0𝐵𝑛(𝑘)(𝑡𝑥)𝑛𝑛!,|𝑡|<2𝜋.(1.1)

The numbers 𝐵𝑛(𝑘)=𝐵𝑛(𝑘)(0) are the Bernoulli numbers of order 𝑘, 𝐵𝑛(1)=𝐵𝑛 are the ordinary Bernoulli numbers (see [2, 5]). By (1.1), we can get (see [4, page 145])

𝑑𝐵𝑑𝑥𝑛(𝑘)(𝑥)=𝑛𝐵(𝑘)𝑛1(𝑥),(1.2)𝐵𝑛(𝑘+1)(𝑥)=𝑘𝑛𝑘𝐵𝑛(𝑘)𝑛(𝑥)+(𝑥𝑘)𝑘𝐵(𝑘)𝑛1(𝑥),(1.3)𝐵𝑛(𝑘+1)(𝑥+1)=𝑛𝑥𝑘𝐵(𝑘)𝑛1(𝑥)𝑛𝑘𝑘𝐵𝑛(𝑘)(𝑥),(1.4) where 𝑛, with being the set of positive integers.

The numbers 𝐵𝑛(𝑛) are called the Nörlund numbers (see [2, 4, 6]). A generating function for the Nörlund numbers 𝐵𝑛(𝑛) is (see [4, page 150])

𝑡=(1+𝑡)log(1+𝑡)𝑛=0𝐵𝑛(𝑛)𝑡𝑛.𝑛!(1.5)

The 𝐷 numbers 𝐷(𝑘)2𝑛 may be defined by (see [4, 7, 8])

(𝑡csc𝑡)𝑘=𝑛=0(1)𝑛𝐷(𝑘)2𝑛𝑡2𝑛(2𝑛)!,|𝑡|<𝜋.(1.6)

By (1.1), (1.6), and note that csc𝑡=2𝑖/(𝑒𝑖𝑡𝑒𝑖𝑡) (where 𝑖2=1), we can get

𝐷(𝑘)2𝑛=4𝑛𝐵(𝑘)2𝑛𝑘2.(1.7)

Taking 𝑘=1,2 in (1.7), and note that 𝐵(1)2𝑛(1/2)=(212𝑛1)𝐵2𝑛, 𝐵(2)2𝑛(1)=(12𝑛)𝐵2𝑛 (see [4, page 22, page 145]), we have

𝐷(1)2𝑛=222𝑛𝐵2𝑛,𝐷(2)2𝑛=4𝑛(12𝑛)𝐵2𝑛.(1.8)

The 𝐷 numbers 𝐷(𝑘)2𝑛 satisfy the recurrence relation (see [7])

𝐷(𝑘)2𝑛=(2𝑛𝑘+2)(2𝑛𝑘+1)(𝐷𝑘2)(𝑘1)(𝑘2)2𝑛2𝑛(2𝑛1)(𝑘2)𝐷𝑘1(𝑘2)2𝑛2.(1.9)

By (1.9), we may immediately deduce the following (see [4, page 147]):

𝐷(2𝑛+1)2𝑛=(1)𝑛(2𝑛)!4𝑛𝑛2𝑛,𝐷(2𝑛+2)2𝑛=(1)𝑛4𝑛2𝑛+1(𝑛!)2,(1.10)𝐷(2𝑛+3)2𝑛=(1)𝑛(2𝑛)!242𝑛12𝑛+2𝑛+11+32+1521++(2𝑛+1)2.(1.11)

The numbers 𝐷(2𝑛)2𝑛 are called the 𝐷-Nörlund numbers that satisfy the recurrence relation (see [7])

𝑛𝑗=0(1)𝑗4𝑗𝑗𝐷(2𝑗+1)2𝑗(2𝑛2𝑗)2𝑛2𝑗=(2𝑛2𝑗)!(1)𝑛4𝑛𝑛,2𝑛(1.12) so we find 𝐷0(0)=1,𝐷2(2)=2/3,𝐷4(4)=88/15,𝐷6(6)=3056/21,𝐷8(8)=319616/45,𝐷(10)10=18940160/33,.

A generating function for the 𝐷-Nörlund numbers 𝐷(2𝑛)2𝑛 is (see [7])

𝑡1+𝑡2log𝑡+1+𝑡2=𝑛=0𝐷(2𝑛)2𝑛𝑡2𝑛(2𝑛)!,|𝑡|<1.(1.13)

These numbers 𝐷(2𝑛)2𝑛 and 𝐷(2𝑛1)2𝑛 have many important applications. For example (see [4, page 246])

0𝜋/2sin𝑡𝑡𝑑𝑡=𝑛=0(1)𝑛𝐷(2𝑛)2𝑛,(2𝑛+1)!0𝜋/2sin𝑡𝑡𝜋𝑑𝑡=2𝑛=0(1)𝑛+1𝐷(2𝑛1)2𝑛22𝑛(2𝑛1)(𝑛!)2,2𝜋=𝑛=0(1)𝑛+1𝐷(2𝑛1)2𝑛(.2𝑛1)(2𝑛)!(1.14)

The main purpose of this paper is to prove a recurrence formula for 𝐷 numbers 𝐷(2𝑛1)2𝑛 and to obtain a generating function for 𝐷 numbers 𝐷(2𝑛1)2𝑛. That is, we will prove the following main conclusion.

Theorem 1.1. Let 𝑛. Then 𝑛𝑗=12𝑛2𝑗(1)𝑗14𝑗1((𝑗1)!)2𝐷(2𝑛12𝑗)2𝑛2𝑗=(1)𝑛12(2𝑛)!4𝑛,2𝑛2𝑛1(1.15) so one finds 𝐷2(1)=1/3,𝐷4(3)=17/5,𝐷6(5)=1835/21,𝐷8(7)=195013/45,𝐷(9)10=3887409/11,.

Theorem 1.2. Let 𝑡 be a complex number with |𝑡|<1. Then 𝑛=0𝐷(2𝑛1)2𝑛𝑡2𝑛=1(2𝑛)!1+𝑡2𝑡log(𝑡+1+𝑡2)2.(1.16)

2. Proof of the Theorems

Proof of Theorem 1.1. Note the identity (see [4, page 203]) 𝐵(𝑘)2𝑛𝑘𝑥+2=𝑛𝑗=0𝐷2𝑛2𝑗(𝑘2𝑗)2𝑛2𝑗22𝑛2𝑗𝑥2𝑥212𝑥222𝑥2(𝑗1)2,(2.1) we have 𝐵(𝑘)2𝑛(𝑥+𝑘/2)𝐵(𝑘)2𝑛(𝑘/2)𝑥2=𝑛𝑗=1𝐷2𝑛2𝑗(𝑘2𝑗)2𝑛2𝑗22𝑛2𝑗𝑥212𝑥222𝑥2(𝑗1)2.(2.2) Therefore, lim𝑥0𝐵(𝑘)2𝑛(𝑥+𝑘/2)𝐵(𝑘)2𝑛(𝑘/2)𝑥2=𝑛𝑗=1𝐷2𝑛2𝑗(𝑘2𝑗)2𝑛2𝑗22𝑛2𝑗(1)𝑗1((𝑗1)!)2.(2.3) By (2.3) and (1.2), we have lim𝑥02𝑛(2𝑛1)𝐵(𝑘)2𝑛2(𝑥+𝑘/2)2=𝑛𝑗=1𝐷2𝑛2𝑗(𝑘2𝑗)2𝑛2𝑗22𝑛2𝑗(1)𝑗1((𝑗1)!)2.(2.4) That is, 𝑛(2𝑛1)𝐵(𝑘)2𝑛2𝑘2=𝑛𝑗=1𝐷2𝑛2𝑗(𝑘2𝑗)2𝑛2𝑗22𝑛2𝑗(1)𝑗1((𝑗1)!)2.(2.5) By (2.5) and (1.7), we have 𝐷(𝑘)2𝑛2=1𝑛(2𝑛1)𝑛𝑗=12𝑛2𝑗(1)𝑗14𝑗1((𝑗1)!)2𝐷(𝑘2𝑗)2𝑛2𝑗.(2.6) Setting 𝑘=2𝑛1 in (2.6), and note (1.10), we immediately obtain Theorem 1.1. This completes the proof of Theorem 1.1.

Remark 2.1. Setting 𝑘=2𝑛 in (2.6), and note (1.10), we may immediately deduce the following recurrence formula for 𝐷-Nörlund numbers 𝐷(2𝑛)2𝑛: 𝑛𝑗=12𝑛2𝑗(1)𝑗4𝑗((𝑗1)!)2𝐷(2𝑛2𝑗)2𝑛2𝑗=(1)𝑛𝑛4𝑛((𝑛1)!)2(𝑛).(2.7)

Proof of Theorem 1.2. Note the identity (see [9]) 𝑛=0(1)𝑛4𝑛(𝑛!)2𝑡2𝑛=1(2𝑛)!1+𝑡2𝑡11+𝑡2log𝑡+1+𝑡2,(2.8) where |𝑡|<1. We have 𝑛=0(1)𝑛4𝑛(𝑛!)2𝑡2𝑛+2=1(2𝑛+2)!2log𝑡+1+𝑡22,(2.9) That is, 𝑛=1(1)𝑛14𝑛1((𝑛1)!)2𝑡2𝑛=1(2𝑛)!2log𝑡+1+𝑡22.(2.10)
On the other hand, 𝑛=1(1)𝑛12(2𝑛)!4𝑛𝑡2𝑛2𝑛12𝑛=1(2𝑛)!2𝑛=0(1)𝑛4𝑛𝑛𝑡2𝑛2𝑛+2=𝑡221+𝑡2.(2.11) Thus, by (2.10), (2.11), and Theorem 1.1, we have 𝑛=1(1)𝑛14𝑛1((𝑛1)!)2𝑡2𝑛(2𝑛)!𝑛=1𝐷(2𝑛1)2𝑛𝑡2𝑛=(2𝑛)!𝑛=1(1)𝑛12(2𝑛)!4𝑛𝑡2𝑛2𝑛12𝑛.(2𝑛)!(2.12) That is, 12log𝑡+1+𝑡22𝑛=1𝐷(2𝑛1)2𝑛𝑡2𝑛=𝑡(2𝑛)!221+𝑡2.(2.13) By (2.13), and note that lim𝑡0𝑡log𝑡+1+𝑡2=1,𝐷0(1)=1,(2.14) we immediately obtain Theorem 1.2. This completes the proof of Theorem 1.2.

Acknowledgment

This work was Supported by the Guangdong Provincial Natural Science Foundation (no. 8151601501000002).