Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-03T22:28:53.569Z Has data issue: false hasContentIssue false

X-ray powder diffraction investigation of new oxynitride precursors: rare earth oxide compounds of fluorite- and sheelite-type structures in the Yb-(Zr,W)-O system

Published online by Cambridge University Press:  01 March 2012

Pascal Maillard
Affiliation:
Laboratoire ‘Sciences Chimiques de Rennes’ UMR CNRS 6226, Université de Rennes 1, Avenue du Général Leclerc, 35042 Rennes cedex, France
Patricia Bénard-Rocherullé
Affiliation:
Laboratoire ‘Sciences Chimiques de Rennes’ UMR CNRS 6226, Université de Rennes 1, Avenue du Général Leclerc, 35042 Rennes cedex, France
Thierry Roisnel
Affiliation:
Laboratoire ‘Sciences Chimiques de Rennes’ UMR CNRS 6226, Université de Rennes 1, Avenue du Général Leclerc, 35042 Rennes cedex, France
Franck Tessier
Affiliation:
Laboratoire ‘Sciences Chimiques de Rennes’ UMR CNRS 6226, Université de Rennes 1, Avenue du Général Leclerc, 35042 Rennes cedex, France

Abstract

Nanocrystallized oxide precursors of colored (oxy)nitrides related to the system Yb-(Zr-W)-O have been successfully prepared using a chimie douce process—the amorphous citrate route. The process involves first a formation of fine and homogeneous powdered solids obtained by calcination at 600 °C, a temperature much lower than that of the conventional solid-state method. At this stage, the X-ray diffraction patterns exhibit large line broadening effects. Finally, two well-crystallized and pure quaternary oxides have been readily obtained by heating and under annealing conditions at 850 and 900 °C for 12 h. For one of the patterns, all the X-ray diffraction lines can be easily indexed to a cubic phase with the fluorite structure conforming to the Fm3m space group [Yb2Zr1.21W0.41O6.651.35 called C-phase: a=5.1864(2) Å]. The second phase adopts the sheelite-type structure [Yb2ZrWO8 called T-phase: space group I41/a, a=5.1584(5), and c=10.8246(6) Å]. By taking into account the present compositions determined by EDS measurements, Rietveld structure refinements produce final RB factors of 0.015 and 0.044, and Rwp factors of 0.069 and 0.089, respectively. In order to characterize the microstructure of the materials (crystallite size and lattice distortion) at the nanometer scale, a study based on diffraction line broadening analysis applying the whole pattern refinement method was also undertaken with confidence. The results show smooth angular variations of the values of FWHMs, indicating that the microstructural properties are isotropic for the cubic and tetragonal oxides. More precisely, the results indicate that whatever the profile fitting approach used (“profile matching” procedure and Rietveld method), the reliability factors Rwp are systematically better with a combined size strain than with zero strain considerations. The strain magnitudes observed for the C-phase-850 °C as well as for the T-phase-900 °C should be viewed as realistic strain.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Audebrand, N., Auffrédic, P. J., and Louër, D. (1998). “X-ray diffraction study of the early stages of the growth of nanoscale zinc oxide crystallites obtained from thermal decomposition of four precursors. General concepts on precursor-dependent microstructural properties,” Chem. Mater.CMATEX10.1021/cm980132f 10, 24502461.CrossRefGoogle Scholar
Balzar, D. and Popa, N. C. (2004). “Crystallite size and residual strain/stress modelling in Rietveld refinement,” in Diffraction Analysis of the Microstructure of Materials, edited by Mittemeijer, E. J. and Scardi, P. (Springer, Berlin), pp. 125145.CrossRefGoogle Scholar
Bénard-Rocherullé, P., Tronel, H., and Louër, D.. (2002). “Structure determination from powder diffraction data of a new layered ammonium lanthanum sulphate, β-(NH4)La(SO4)2,” Powder Diffr.PODIE210.1154/1.1407250 17, 18.CrossRefGoogle Scholar
Boultif, A. and Louër, D. (2004). “Powder pattern indexing with the dichotomy method,” J. Appl. Crystallogr.JACGAR10.1107/S0021889804014876 37, 724731.CrossRefGoogle Scholar
Brown, I. D. (1996). “VALENCE: a program for calculating bond valences,” J. Appl. Crystallogr.JACGAR10.1107/S002188989600163X 29, 479480.CrossRefGoogle Scholar
Cockroft, J. K. (2002). “Variable count time data collection in powder X-ray diffraction,” Commission on Powder Diffraction Newsletter 27, 2324.Google Scholar
de Keijser, Th. H. Langford, J. I., Mittemeijer, E. J., and Vogels, A. B. P. (1982). “Use of the Voigt function in a single-line method for the analysis of X-ray diffraction line broadening,” J. Appl. Crystallogr.JACGAR10.1107/S0021889882012035 15, 308314.CrossRefGoogle Scholar
Diot, N., Bénard-Rocherullé, P., and Marchand, R. (2000). “X-ray powder diffraction data and Rietveld refinement for L n 6WO12 (L n=Y,Ho),” Powder Diffr.PODIE2 14, 220226.CrossRefGoogle Scholar
Douy, A. and Odier, P. (1989). “The polyacrylamide gel: A novel route to ceramic and glassy oxide powders,” Mater. Res. Bull.MRBUAC10.1016/0025-5408(89)90069-X 24, 11191126.CrossRefGoogle Scholar
Hitoki, G., Takata, T., Kondo, J. N., Hara, M., Kobayashi, H., and Domen, K. (2002). “(Oxy)nitrides as new photocatalysts for water splitting under visible light irradiation,” Electrochemistry (Tokyo, Jpn.)EECTFA 70, 463465.Google Scholar
ICDD. (2006). “Powder diffraction file,” International Centre for Diffraction Data, edited by McClune, Frank, 12 Campus Boulevard, Newtown Square, PA 19073–3272.Google Scholar
Kjaer, K., Als-Nielsen, J., Laursen, I., and Krebs Larsen, F. (1989). “A neutron scattering study of the dilute dipolar-coupled ferromagnets LiTb0.3Y0.7F4,” J. Phys.: Condens. MatterJCOMEL10.1088/0953-8984/1/33/019 1, 57435747.Google Scholar
Le Bail, A., Duroy, H., and Fourquet, J. L. (1988). “Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction,” Mater. Res. Bull.MRBUAC10.1016/0025-5408(88)90019-0 23, 447552.CrossRefGoogle Scholar
Louër, D. and Langford, J. I. (1988). “Peak shape and resolution in conventional diffractometry with monochromatic X-rays,” J. Appl. Crystallogr.JACGAR10.1107/S002188988800411X 21, 430437.CrossRefGoogle Scholar
Louër, D., Bataille, T., Roisnel, T., and Rodriguez-Carvajal, J. (2002). “A study of nanocrystalline yttrium oxide from diffraction-line-profile analysis: comparison of methods and crystallite growth,” Powder Diffr.PODIE210.1154/1.1523077 17, 262269.CrossRefGoogle Scholar
Maillard, P. (2006). “Recherche de nouveaux photocatalyseurs actifs en lumière visible: Exploration de systèmes (oxy)nitrures,” Ph.D. thesis no. 3396, Université de Rennes 1, Rennes, France.Google Scholar
Maillard, P., Tessier, F. Orhan, E., Cheviré, F., and Marchand, R. (2005). “Thermal Amonolysis study of the rare-earth tantalates RTaO4,” Chem. Mater.CMATEX 17, 152156.CrossRefGoogle Scholar
Mighell, A. D., Hubbard, C. R., and Stalick, J. K. (1981). NBS*AIDS80: A FORTRAN Program for Crystallographic Data, U.S. Natl. Bur. Stand. Tech. Note No. 114, p. 54 (NBS*AIDS83 is an expanded version of NBS*AIDS80).Google Scholar
Orhan, E. (2002). “Etude théorique et expérimentale d’(oxy)nitrures: Synthèse, caractérisation, structure électronique des nitrures M 3N2 (M=Be,Mg,Ca,Sr,Ba) et Ta3N5 et des oxynitrures TaON, L n 2Ta2O5N2 et L n 2(Zr,W)2(O,N,)8 (L n=element de terre rare),” Ph.D. thesis no. 2773, Université de Rennes 1, Rennes, France.Google Scholar
Rodríguez-Carvajal, J. (1990). “FullProf: A Program for Rietveld Refinement and Pattern Matching Analysis,” Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, p. 127.Google Scholar
Rodríguez-Carvajal, J. (2001). “Recent developments of the program FullProf,” IUCr-CPD, Newsletter 26, pp. 1219.Google Scholar
Rodríguez-Carvajal, J. and Roisnel, T. (2002). “Line broadening analysis using FULLPROF: determination of microstructural properties,” EPDIC-8, Proceedings of the 8th European Powder Diffraction Conference, Uppsala, Sweden, May 2002.Google Scholar
Roisnel, T. and Rodríguez-Carvajal, J. (2001). “WinPLOTR: a windows tool for powder diffraction pattern analysis,” Mater. Sci. ForumMSFOEP 378–381, 118123.CrossRefGoogle Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.ACACBN10.1107/S0567739476001551 32, 751767.CrossRefGoogle Scholar
Stokes, A. R. and Wilson, A. J. C. (1944). “The diffraction of X-rays by distorted crystal aggregates-I,” Proc. Phys. Soc. LondonPPSOAU10.1088/0959-5309/56/3/303 56, 174181.CrossRefGoogle Scholar
Tessier, F. and Marchand, R. (2003). “Ternary and higher order of rare-earth nitride materials: synthesis and characterization of ionic-covalent oxynitride powders,” J. Solid State Chem.JSSCBI 171, 143151.CrossRefGoogle Scholar
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3,” J. Appl. Crystallogr.JACGAR10.1107/S0021889887087090 20, 7983.CrossRefGoogle Scholar
Werner, P.-E., Eriksson, L., and Westdahl, M. (1985). “TREOR, a semi-exhaustive trial-and-error powder indexing program for all symmetries,” J. Appl. Crystallogr.JACGAR10.1107/S0021889885010512 18, 367370.CrossRefGoogle Scholar