1932

Abstract

In recent years, interest has grown in modeling spatio-temporal data generated from monitoring networks, satellite imaging, and climate models. Under Gaussianity, the covariance function is core to spatio-temporal modeling, inference, and prediction. In this article, we review the various space-time covariance structures in which simplified assumptions, such as separability and full symmetry, are made to facilitate computation, and associated tests intended to validate these structures. We also review recent developments on constructing space-time covariance models, which can be separable or nonseparable, fully symmetric or asymmetric, stationary or nonstationary, univariate or multivariate, and in Euclidean spaces or on the sphere. We visualize some of the structures and models with visuanimations. Finally, we discuss inference for fitting space-time covariance models and describe a case study based on a new wind-speed data set.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-042720-115603
2021-03-07
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/statistics/8/1/annurev-statistics-042720-115603.html?itemId=/content/journals/10.1146/annurev-statistics-042720-115603&mimeType=html&fmt=ahah

Literature Cited

  1. Abdulah S, Ltaief H, Sun Y, Genton MG, Keyes DE 2018. ExaGeoStat: a high performance unified software for geostatistics on manycore systems. IEEE Trans. Parallel Distrib. Syst. 29:2771–84
    [Google Scholar]
  2. Ailliot P, Baxevani A, Cuzol A, Monbet V, Raillard N 2011. Space–time models for moving fields with an application to significant wave height fields. Environmetrics 22:354–69
    [Google Scholar]
  3. Alegría A, Porcu E. 2017. The dimple problem related to space–time modeling under the Lagrangian framework. J. Multivar. Anal. 162:110–21
    [Google Scholar]
  4. Alegría A, Porcu E, Furrer R, Mateu J 2019. Covariance functions for multivariate Gaussian fields evolving temporally over planet earth. Stoch. Environ. Res. Risk Assess. 33:1593–608
    [Google Scholar]
  5. Alturki FM, Alsheikh R. 2016. A renewable energy market. Saudi Vision 2030 http://vision2030.gov.sa/en/node/87
    [Google Scholar]
  6. Apanasovich TV, Genton MG. 2010. Cross-covariance functions for multivariate random fields based on latent dimensions. Biometrika 97:15–30
    [Google Scholar]
  7. Askey R. 1973. Radial characteristic functions Tech. Rep., Univ. Wis.–Madison Math. Res. Cent.
  8. Aston JA, Pigoli D, Tavakoli S 2017. Tests for separability in nonparametric covariance operators of random surfaces. Ann. Stat. 45:1431–61
    [Google Scholar]
  9. Bai Y, Song PXK, Raghunathan T 2012. Joint composite estimating functions in spatiotemporal models. J. R. Stat. Soc. Ser. B 74:799–824
    [Google Scholar]
  10. Bandyopadhyay S, Jentsch C, Subba Rao S 2017. A spectral domain test for stationarity of spatio-temporal data. J. Time Ser. Anal. 38:326–51
    [Google Scholar]
  11. Bandyopadhyay S, Subba Rao S. 2017. A test for stationarity for irregularly spaced spatial data. J. R. Stat. Soc. Ser. B 79:95–123
    [Google Scholar]
  12. Berg C, Porcu E. 2017. From Schoenberg coefficients to Schoenberg functions. Constr. Approx. 45:217–41
    [Google Scholar]
  13. Bevilacqua M, Gaetan C, Mateu J, Porcu E 2012. Estimating space and space-time covariance functions for large data sets: a weighted composite likelihood approach. J. Am. Stat. Assoc. 107:268–80
    [Google Scholar]
  14. Bevilacqua M, Mateu J, Porcu E, Zhang H, Zini A 2010. Weighted composite likelihood-based tests for space-time separability of covariance functions. Stat. Comput. 20:283–93
    [Google Scholar]
  15. Bochner S. 1955. Harmonic Analysis and The Theory of Probability Berkeley, CA: Univ. Calif. Press
  16. Bornn L, Shaddick G, Zidek JV 2012. Modeling nonstationary processes through dimension expansion. J. Am. Stat. Assoc. 107:281–89
    [Google Scholar]
  17. Bourotte M, Allard D, Porcu E 2016. A flexible class of non-separable cross-covariance functions for multivariate space–time data. Spat. Stat. 18:125–46
    [Google Scholar]
  18. Brown PE, Diggle PJ, Lord ME, Young PC 2001. Space–time calibration of radar rainfall data. J. R. Stat. Soc. Ser. C 50:221–41
    [Google Scholar]
  19. Brown PE, Roberts GO, Kåresen KF, Tonellato S 2000. Blur-generated non-separable space–time models. J. R. Stat. Soc. Ser. B 62:847–60
    [Google Scholar]
  20. Cappello C, De Iaco S, Posa D 2018. Testing the type of non-separability and some classes of space–time covariance function models. Stoch. Environ. Res. Risk. Assess. 32:17–35
    [Google Scholar]
  21. Chaganty NR, Naik DN. 2002. Analysis of multivariate longitudinal data using quasi-least squares. J. Stat. Plan. Inference 103:421–36
    [Google Scholar]
  22. Chen W, Castruccio S, Genton MG, Crippa P 2018. Current and future estimates of wind energy potential over Saudi Arabia. J. Geophys. Res. Atmos. 123:6443–59
    [Google Scholar]
  23. Christakos G. 1991. On certain classes of spatiotemporal random fields with applications to space-time data processing. IEEE Trans. Syst. Man. Cybernet. 21:861–75
    [Google Scholar]
  24. Christakos G. 2000. Modern Spatiotemporal Geostatistics Oxford, UK: Oxford Univ. Press
  25. Christakos G. 2005. Random Field Models in Earth Sciences Mineola, NY: Dover
  26. Christakos G. 2017. Spatiotemporal Random Fields: Theory and Applications Amsterdam: Elsevier
  27. Christakos G, Hristopulos D. 1998. Spatiotemporal Environmental Health Modelling Dordrecht, Neth: Kluwer Acad.
  28. Constantinou P, Kokoszka P, Reimherr M 2017. Testing separability of space-time functional processes. Biometrika 104:425–37
    [Google Scholar]
  29. Cox DR, Isham V. 1988. A simple spatial-temporal model of rainfall. Proc. R. Soc. Lond. Ser. A 415:317–28
    [Google Scholar]
  30. Cressie N, Huang HC. 1999. Classes of nonseparable, spatio-temporal stationary covariance functions. J. Am. Stat. Assoc. 94:1330–39
    [Google Scholar]
  31. Cressie N, Johannesson G. 2008. Fixed rank kriging for very large spatial data sets. J. R. Stat. Soc. Ser. B 70:209–26
    [Google Scholar]
  32. Cressie N, Wikle CK. 2011. Statistics for Spatio-Temporal Data New York: Wiley
  33. Crujeiras RM, Fernández-Casal R, González-Manteiga W 2010. Nonparametric test for separability of spatio-temporal processes. Environmetrics 21:382–99
    [Google Scholar]
  34. De Iaco S, Myers DE, Posa D 2001. Space–time analysis using a general product–sum model. Stat. Probab. Lett. 52:21–28
    [Google Scholar]
  35. De Iaco S, Myers DE, Posa D 2002. Nonseparable space-time covariance models: some parametric families. Math. Geol. 34:23–42
    [Google Scholar]
  36. De Iaco S, Myers DE, Posa D 2011. On strict positive definiteness of product and product–sum covariance models. J. Stat. Plan. Inference 141:1132–40
    [Google Scholar]
  37. De Iaco S, Palma M, Posa D 2019. Choosing suitable linear coregionalization models for spatio-temporal data. Stoch. Environ. Res. Risk Assess. 33:1419–34
    [Google Scholar]
  38. De Iaco S, Posa D 2013. Positive and negative non-separability for space–time covariance models. J. Stat. Plan. Inference 143:378–91
    [Google Scholar]
  39. de Luna X, Genton MG 2005. Predictive spatio-temporal models for spatially sparse environmental data. Stat. Sin. 15:547–68
    [Google Scholar]
  40. Ezzat AA, Jun M, Ding Y 2018. Spatio-temporal asymmetry of local wind fields and its impact on short-term wind forecasting. IEEE Trans. Sustain. Energy 9:1437–47
    [Google Scholar]
  41. Fonseca TC, Steel MF. 2011a. A general class of nonseparable space–time covariance models. Environmetrics 22:224–42
    [Google Scholar]
  42. Fonseca TC, Steel MF. 2011b. Non-Gaussian spatiotemporal modelling through scale mixing. Biometrika 98:761–74
    [Google Scholar]
  43. Fonseca TC, Steel MF. 2017. Measuring separability in spatio–temporal covariance functions Work. Pap., Fed. Univ. Rio De Janeiro Brazil:
  44. Fuentes M. 2002. Spectral methods for nonstationary spatial processes. Biometrika 89:197–210
    [Google Scholar]
  45. Fuentes M. 2005. A formal test for nonstationarity of spatial stochastic processes. J. Multivar. Anal. 96:30–54
    [Google Scholar]
  46. Fuentes M. 2006. Testing for separability of spatial–temporal covariance functions. J. Stat. Plan. Inference 136:447–66
    [Google Scholar]
  47. Fuentes M, Chen L, Davis JM 2008. A class of nonseparable and nonstationary spatial temporal covariance functions. Environmetrics 19:487–507
    [Google Scholar]
  48. Fuentes M, Smith RL. 2001. A new class of nonstationary spatial models Tech. Rep., Dep. Stat., N. C. State Univ.
  49. Furrer R, Sain SR. 2010. Spam: a sparse matrix R package with emphasis on MCMC methods for Gaussian Markov random fields. J. Stat. Softw. 36:1–25
    [Google Scholar]
  50. Genton MG. 2007. Separable approximations of space-time covariance matrices. Environmetrics 18:681–95
    [Google Scholar]
  51. Genton MG, Castruccio S, Crippa P, Dutta S, Huser R et al. 2015. Visuanimation in statistics. Stat 4:81–96
    [Google Scholar]
  52. Genton MG, Kleiber W. 2015. Cross-covariance functions for multivariate geostatistics (with discussion). Stat. Sci. 30:147–63
    [Google Scholar]
  53. Gneiting T. 2002. Nonseparable, stationary covariance functions for space–time data. J. Am. Stat. Assoc. 97:590–600
    [Google Scholar]
  54. Gneiting T. 2013. Strictly and non-strictly positive definite functions on spheres. Bernoulli 19:1327–49
    [Google Scholar]
  55. Gneiting T, Genton MG, Guttorp P 2007. Geostatistical space-time models, stationarity, separability, and full symmetry. Statistics of Spatio-Temporal Systems B Finkenstaedt, L Held, V Isham 151–75 Boca Raton, FL: Chapman & Hall/CRC
    [Google Scholar]
  56. Gneiting T, Kleiber W, Schlather M 2010. Matérn cross-covariance functions for multivariate random fields. J. Am. Stat. Assoc. 105:1167–77
    [Google Scholar]
  57. Gneiting T, Schlather M. 2002. Space-time covariance models. Encyclopedia of Environmetrics, Vol. 4 AH El-Shaarawi, WW Piegorsch 2041–45 Chichester, UK: Wiley
    [Google Scholar]
  58. Guinness J, Fuentes M. 2016. Isotropic covariance functions on spheres: some properties and modeling considerations. J. Multivar. Anal. 143:143–52
    [Google Scholar]
  59. Guo JH, Billard L. 1998. Some inference results for causal autoregressive processes on a plane. J. Time Ser. Anal. 19:681–91
    [Google Scholar]
  60. Gupta VK, Waymire E. 1987. On Taylor's hypothesis and dissipation in rainfall. J. Geophys. Res. Atmos. 92:9657–60
    [Google Scholar]
  61. Hansen LP. 1982. Large sample properties of generalized method of moments estimators. Econometrica 50:41029–54
    [Google Scholar]
  62. Heine V. 1955. Models for two-dimensional stationary stochastic processes. Biometrika 42:170–78
    [Google Scholar]
  63. Higdon D, Swall J, Kern J 1999. Non-stationary spatial modeling. Bayesian Statistics, Vol. 6 J Bernardo, J Berger, A Dawid, A Smith 761–68 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  64. Hitczenko M, Stein ML. 2012. Some theory for anisotropic processes on the sphere. Stat. Method. 9:211–27
    [Google Scholar]
  65. Horrell MT, Stein ML. 2017. Half-spectral space–time covariance models. Spat. Stat. 19:90–100
    [Google Scholar]
  66. Huang H, Sun Y. 2019. Visualization and assessment of spatio-temporal covariance properties. Spat. Stat. 34:100272
    [Google Scholar]
  67. Huizenga HM, De Munck JC, Waldorp LJ, Grasman RP 2002. Spatiotemporal EEG/MEG source analysis based on a parametric noise covariance model. IEEE Trans. Biomed. Eng. 49:533–39
    [Google Scholar]
  68. Inoue T, Sasaki T, Washio T 2012. Spatio-temporal kriging of solar radiation incorporating direction and speed of cloud movement. The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012 https://www.jstage.jst.go.jp/article/pjsai/JSAI2012/0/JSAI2012_1K2IOS1b3/_pdf/-char/ja
    [Google Scholar]
  69. Ip RH, Li WK. 2015. Time varying spatio-temporal covariance models. Spat. Stat. 14:269–85
    [Google Scholar]
  70. Ip RH, Li WK. 2016. Matérn cross-covariance functions for bivariate spatio-temporal random fields. Spat. Stat. 17:22–37
    [Google Scholar]
  71. Ip RH, Li WK. 2017a. A class of valid Matérn cross-covariance functions for multivariate spatio-temporal random fields. Stat. Probab. Lett. 130:115–19
    [Google Scholar]
  72. Ip RH, Li WK. 2017b. On some Matérn covariance functions for spatio-temporal random fields. Stat. Sin. 27:805–22
    [Google Scholar]
  73. Irvine KM, Gitelman AI, Hoeting JA 2007. Spatial designs and properties of spatial correlation: effects on covariance estimation. J. Agric. Biol. Environ. Stat. 12:450–69
    [Google Scholar]
  74. Jeong J, Jun M. 2015. A class of Matérn-like covariance functions for smooth processes on a sphere. Spat. Stat. 11:1–18
    [Google Scholar]
  75. Jeong J, Jun M, Genton MG 2017. Spherical process models for global spatial statistics. Stat. Sci. 32:501–13
    [Google Scholar]
  76. Jones RH, Zhang Y. 1997. Models for continuous stationary space-time processes. Modelling Longitudinal and Spatially Correlated Data GT Brillinger, DR Diggle, E Russek-Cohen, WG Warren, RD Wolfinger 289–98 New York: Springer
    [Google Scholar]
  77. Jun M, Genton MG. 2012. A test for stationarity of spatio-temporal random fields on planar and spherical domains. Stat. Sin. 22:1737–64
    [Google Scholar]
  78. Jun M, Stein ML. 2007. An approach to producing space–time covariance functions on spheres. Technometrics 49:468–79
    [Google Scholar]
  79. Jun M, Stein ML. 2008. Nonstationary covariance models for global data. Ann. Appl. Stat. 2:1271–89
    [Google Scholar]
  80. Katzfuss M. 2017. A multi-resolution approximation for massive spatial datasets. J. Am. Stat. Assoc. 112:201–14
    [Google Scholar]
  81. Kaufman CG, Schervish MJ, Nychka DW 2008. Covariance tapering for likelihood-based estimation in large spatial data sets. J. Am. Stat. Assoc. 103:1545–55
    [Google Scholar]
  82. Kolovos A, Christakos G, Hristopulos DT, Serre ML 2004. Methods for generating non-separable spatiotemporal covariance models with potential environmental applications. Adv. Water Resour. 27:815–30
    [Google Scholar]
  83. Kyriakidis PC, Journel AG. 1999. Geostatistical space–time models: a review. Math. Geol. 31:651–84
    [Google Scholar]
  84. Li B, Genton MG, Sherman M 2007. A nonparametric assessment of properties of space–time covariance functions. J. Am. Stat. Assoc. 102:736–44
    [Google Scholar]
  85. Li B, Genton MG, Sherman M 2008a. On the asymptotic joint distribution of sample space: Time covariance estimators. Bernoulli 14:228–48
    [Google Scholar]
  86. Li B, Genton MG, Sherman M 2008b. Testing the covariance structure of multivariate random fields. Biometrika 95:813–29
    [Google Scholar]
  87. Li B, Murthi A, Bowman KP, North GR, Genton MG, Sherman M 2009. Statistical tests of Taylor's hypothesis: an application to precipitation fields. J. Hydrometeorol. 10:254–65
    [Google Scholar]
  88. Lindsay BG. 1988. Composite likelihood methods. Contemp. Math. 80:221–39
    [Google Scholar]
  89. Liu C, Ray S, Hooker G 2017. Functional principal component analysis of spatially correlated data. Stat. Comput. 27:1639–54
    [Google Scholar]
  90. Lonij VP, Brooks AE, Cronin AD, Leuthold M, Koch K 2013. Intra-hour forecasts of solar power production using measurements from a network of irradiance sensors. Sol. Energy 97:58–66
    [Google Scholar]
  91. Lu N, Zimmerman DL. 2005a. Testing for directional symmetry in spatial dependence using the periodogram. J. Stat. Plan. Inference 129:369–85
    [Google Scholar]
  92. Lu N, Zimmerman DL. 2005b. The likelihood ratio test for a separable covariance matrix. Stat. Probab. Lett. 73:449–57
    [Google Scholar]
  93. Ma C. 2002. Spatio-temporal covariance functions generated by mixtures. Math. Geol. 34:965–75
    [Google Scholar]
  94. Ma C. 2003a. Families of spatio-temporal stationary covariance models. J. Stat. Plan. Inference 116:489–501
    [Google Scholar]
  95. Ma C. 2003b. Spatio-temporal stationary covariance models. J. Multivar. Anal. 86:97–107
    [Google Scholar]
  96. Ma C. 2005. Linear combinations of space-time covariance functions and variograms. IEEE Trans. Signal Process. 53:857–64
    [Google Scholar]
  97. Matérn B. 1986. Spatial Variation New York: Springer. , 2nd. ed.
  98. May DR, Julien PY. 1998. Eulerian and Lagrangian correlation structures of convective rainstorms. Water Resour. Res. 34:2671–83
    [Google Scholar]
  99. Mitchell MW, Genton MG, Gumpertz ML 2005. Testing for separability of space–time covariances. Environmetrics 16:819–31
    [Google Scholar]
  100. Mitchell MW, Genton MG, Gumpertz ML 2006. A likelihood ratio test for separability of covariances. J. Multivar. Anal. 97:1025–43
    [Google Scholar]
  101. Mitchell MW, Gumpertz M. 2003. Spatial variability inside a free-air CO2 enrichment system. J. Agric. Biol. Environ. Stat. 8:310–27
    [Google Scholar]
  102. Montero JM, Fernández-Avilés G, Mateu J 2015. Spatial and Spatio-Temporal Geostatistical Modeling and Kriging New York: Wiley
  103. North GR, Wang J, Genton MG 2011. Correlation models for temperature fields. J. Clim. 24:5850–62
    [Google Scholar]
  104. Nychka D, Wikle C, Royle JA 2002. Multiresolution models for nonstationary spatial covariance functions. Stat. Model. 2:315–31
    [Google Scholar]
  105. Paciorek CJ, Yanosky JD, Puett RC, Laden F, Suh HH 2009. Practical large-scale spatio-temporal modeling of particulate matter concentrations. Ann. Appl. Stat. 3:370–97
    [Google Scholar]
  106. Padoan SA, Bevilacqua M. 2015. Analysis of random fields using CompRandFld. J. Stat. Softw. 63:91–27
    [Google Scholar]
  107. Park MS, Fuentes M. 2008. Testing lack of symmetry in spatial–temporal processes. J Stat. Plan. Inference 138:2847–66
    [Google Scholar]
  108. Pebesma E. 2012. spacetime: Spatio-temporal data in R. J. Stat. Softw. 51:1–30
    [Google Scholar]
  109. Pebesma EJ. 2004. Multivariable geostatistics in S: the gstat package. Comput. Geosci. 30:683–91
    [Google Scholar]
  110. Pintore A, Holmes C. 2007. Spatially adaptive non-stationary covariance functions via spatially adaptive spectra Tech. Rep., Dep. Stat., Oxford Univ Oxford, UK:
  111. Porcu E, Alegría A, Furrer R 2018. Modeling temporally evolving and spatially globally dependent data. Int. Stat. Rev. 86:344–77
    [Google Scholar]
  112. Porcu E, Bevilacqua M, Genton MG 2016. Spatio-temporal covariance and cross-covariance functions of the great circle distance on a sphere. J. Am. Stat. Assoc. 111:888–98
    [Google Scholar]
  113. Porcu E, Bevilacqua M, Genton MG 2020. Nonseparable space-time covariance functions with dynamical compact supports. Stat. Sin. 30:719–39
    [Google Scholar]
  114. Porcu E, Gregori P, Mateu J 2006. Nonseparable stationary anisotropic space–time covariance functions. Stoch. Environ. Res. Risk Assess. 21:113–22
    [Google Scholar]
  115. Porcu E, Mateu J, Bevilacqua M 2007. Covariance functions that are stationary or nonstationary in space and stationary in time. Stat. Neerl. 61:358–82
    [Google Scholar]
  116. Porcu E, Mateu J, Saura F 2008. New classes of covariance and spectral density functions for spatio-temporal modelling. Stoch. Environ. Res. Risk Assess. 22:65–79
    [Google Scholar]
  117. book 2020. R: A Language and Environment for Statistical Computing Vienna: R Found. Stat. Comput http://www.R-project.org
  118. Rodrigues A, Diggle PJ. 2010. A class of convolution-based models for spatio-temporal processes with non-separable covariance structure. Scand. J. Stat. 37:553–67
    [Google Scholar]
  119. Roy A, Khattree R. 2003. Tests for mean and covariance structures relevant in repeated measures based discriminant analysis. J. Appl. Stat. Sci. 12:91–104
    [Google Scholar]
  120. Roy A, Khattree R. 2005a. On implementation of a test for Kronecker product covariance structure for multivariate repeated measures data. Stat. Methodol. 2:297–306
    [Google Scholar]
  121. Roy A, Khattree R. 2005b. Testing the hypothesis of a Kronecker product covariance matrix in multivariate repeated measures data. Proceedings of the 30th Annual SAS Users Group International Conference, SUGI 30199–30 Cary, NC: SAS Inst.
    [Google Scholar]
  122. Roy A, Leiva R. 2008. Likelihood ratio tests for triply multivariate data with structured correlation on spatial repeated measurements. Stat. Probab. Lett. 78:1971–80
    [Google Scholar]
  123. Rue H, Tjelmeland H. 2002. Fitting Gaussian Markov random fields to Gaussian fields. Scand. J. Stat. 29:31–49
    [Google Scholar]
  124. Sahu SK, Gelfand AE, Holland DM 2007. High-resolution space–time ozone modeling for assessing trends. J. Am. Stat. Assoc. 102:1221–34
    [Google Scholar]
  125. Salvaña MLO, Genton MG. 2020. Nonstationary cross-covariance functions for multivariate spatio-temporal random fields. Spat. Stat. 37:100411
    [Google Scholar]
  126. Samo YLK, Roberts S. 2015. Generalized spectral kernels. arXiv:1506.02236 [stat.ML]
  127. Sampson PD, Guttorp P. 1992. Nonparametric estimation of nonstationary spatial covariance structure. J. Am. Stat. Assoc. 87:108–19
    [Google Scholar]
  128. Scaccia L, Martin R. 2002. Testing for simplification in spatial models. Compstat W Härdle, B Rönz 581–86 New York: Springer
    [Google Scholar]
  129. Scaccia L, Martin R. 2005. Testing axial symmetry and separability of lattice processes. J. Stat. Plan. Inference 131:19–39
    [Google Scholar]
  130. Schlather M. 2010. Some covariance models based on normal scale mixtures. Bernoulli 16:780–97
    [Google Scholar]
  131. Shand L, Li B. 2017. Modeling nonstationarity in space and time. Biometrics 73:759–68
    [Google Scholar]
  132. Shao X, Li B. 2009. A tuning parameter free test for properties of space–time covariance functions. J. Stat. Plan. Inference 139:4031–38
    [Google Scholar]
  133. Shinozaki K, Yamakawa N, Sasaki T, Inoue T 2016. Areal solar irradiance estimated by sparsely distributed observations of solar radiation. IEEE Trans. Power Syst. 31:35–42
    [Google Scholar]
  134. Simpson SL. 2010. An adjusted likelihood ratio test for separability in unbalanced multivariate repeated measures data. Stat. Methodol. 7:511–19
    [Google Scholar]
  135. Stein ML. 2005a. Space–time covariance functions. J. Am. Stat. Assoc. 100:310–21
    [Google Scholar]
  136. Stein ML. 2005b. Statistical methods for regular monitoring data. J. R. Stat. Soc. Ser. B 67:667–87
    [Google Scholar]
  137. Sun Y, Genton MG. 2011. Functional boxplots. J. Comput. Graph. Stat. 20:316–34
    [Google Scholar]
  138. Taylor GI. 1938. The spectrum of turbulence. Proc. R. Soc. Lond. Ser. A 164:476–90
    [Google Scholar]
  139. Varin C, Reid N, Firth D 2011. An overview of composite likelihood methods. Stat. Sin. 21:5–42
    [Google Scholar]
  140. Weller ZD, Hoeting JA. 2016. A review of nonparametric hypothesis tests of isotropy properties in spatial data. Stat. Sci. 31:305–24
    [Google Scholar]
  141. Wendland H. 1995. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4:389–96
    [Google Scholar]
  142. Wikle CK, Royle JA. 2005. Dynamic design of ecological monitoring networks for non-Gaussian spatio-temporal data. Environmetrics 16:507–22
    [Google Scholar]
  143. Wikle CK, Zammit-Mangion A, Cressie N 2019. Spatio-Temporal Statistics with R Boca Raton, FL: CRC
  144. Wilks DS, Wilby RL. 1999. The weather generation game: a review of stochastic weather models. Prog. Phys. Geogr. 23:329–57
    [Google Scholar]
  145. Xu H, Gardoni P. 2018. Improved latent space approach for modelling non-stationary spatial–temporal random fields. Spat. Stat. 23:160–81
    [Google Scholar]
  146. Yaglom AM. 1987. Correlation Theory of Stationary and Related Random Functions New York: Springer
  147. Yip CMA. 2018. Statistical Characteristics and Mapping of Near-Surface and Elevated Wind Resources in The Middle East Ph.D. Thesis, King Abdullah Univ. Sci. Technol., Thuwal Saudi Arab:.
  148. Zastavnyi VP, Trigub RM. 2002. Positive-definite splines of special form. Sbornik Math 193:1771–800
    [Google Scholar]
/content/journals/10.1146/annurev-statistics-042720-115603
Loading
/content/journals/10.1146/annurev-statistics-042720-115603
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error