1932

Abstract

DNA double-strand breaks (DSBs) are cytotoxic lesions that threaten genome integrity and cell viability. Typically, cells repair DSBs by either nonhomologous end joining (NHEJ) or homologous recombination (HR). The relative use of these two pathways depends on many factors, including cell cycle stage and the nature of the DNA ends. A critical determinant of repair pathway selection is the initiation of 5′→3′ nucleolytic degradation of DNA ends, a process referred to as DNA end resection. End resection is essential to create single-stranded DNA overhangs, which serve as the substrate for the Rad51 recombinase to initiate HR and are refractory to NHEJ repair. Here, we review recent insights into the mechanisms of end resection, how it is regulated, and the pathological consequences of its dysregulation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-071719-020312
2021-11-23
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/genet/55/1/annurev-genet-071719-020312.html?itemId=/content/journals/10.1146/annurev-genet-071719-020312&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Aiello FA, Palma A, Malacaria E, Zheng L, Campbell JL et al. 2019. RAD51 and mitotic function of mus81 are essential for recovery from low-dose of camptothecin in the absence of the WRN exonuclease. Nucleic Acids Res 47:6796–810
    [Google Scholar]
  2. 2. 
    Ait Saada A, Teixeira-Silva A, Iraqui I, Costes A, Hardy J et al. 2017. Unprotected replication forks are converted into mitotic sister chromatid bridges. Mol. Cell 66:398–410.e4
    [Google Scholar]
  3. 3. 
    Anand R, Jasrotia A, Bundschuh D, Howard SM, Ranjha L et al. 2019. NBS1 promotes the endonuclease activity of the MRE11-RAD50 complex by sensing CtIP phosphorylation. EMBO J 38:e101005
    [Google Scholar]
  4. 4. 
    Anand R, Ranjha L, Cannavo E, Cejka P. 2016. Phosphorylated CtIP functions as a co-factor of the MRE11-RAD50-NBS1 endonuclease in DNA end resection. Mol. Cell 64:940–50
    [Google Scholar]
  5. 5. 
    Bae S-H, Bae K-H, Kim J-A, Seo Y-S. 2001. RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes. Nature 412:456–61
    [Google Scholar]
  6. 6. 
    Bai Y, Wang W, Li S, Zhan J, Li H et al. 2019. C1QBP promotes homologous recombination by stabilizing MRE11 and controlling the assembly and activation of MRE11/RAD50/NBS1 complex. Mol. Cell 75:1299–314.e6
    [Google Scholar]
  7. 7. 
    Bansbach CE, Betous R, Lovejoy CA, Glick GG, Cortez D 2009. The annealing helicase SMARCAL1 maintains genome integrity at stalled replication forks. Genes Dev 23:2405–14
    [Google Scholar]
  8. 8. 
    Bantele SCS, Pfander B. 2019. Nucleosome remodeling by Fun30SMARCAD1 in the DNA damage response. Front. Mol. Biosci. 6:78
    [Google Scholar]
  9. 9. 
    Baroni E, Viscardi V, Cartagena-Lirola H, Lucchini G, Longhese MP. 2004. The functions of budding yeast Sae2 in the DNA damage response require Mec1- and Tel1-dependent phosphorylation. Mol. Cell. Biol. 24:4151–65
    [Google Scholar]
  10. 10. 
    Becker JR, Bonnet C, Clifford G, Groth A, Wilson MD, Chapman JR. 2021. BARD1 links histone H2A Lysine-15 ubiquitination to initiation of BRCA1-dependent homologous recombination. Nature 596:43337
    [Google Scholar]
  11. 11. 
    Becker JR, Cuella-Martin R, Barazas M, Liu R, Oliveira C et al. 2018. The ASCIZ-DYNLL1 axis promotes 53BP1-dependent non-homologous end joining and PARP inhibitor sensitivity. Nat. Commun. 9:5406
    [Google Scholar]
  12. 12. 
    Bennardo N, Cheng A, Huang N, Stark JM. 2008. Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair. PLOS Genet 4:e1000110
    [Google Scholar]
  13. 13. 
    Bennett LG, Wilkie AM, Antonopoulou E, Ceppi I, Sanchez A et al. 2020. MRNIP is a replication fork protection factor. Sci. Adv. 6:eaba5974
    [Google Scholar]
  14. 14. 
    Betermier M, Borde V, de Villartay JP. 2020. Coupling DNA damage and repair: an essential safeguard during programmed DNA double-strand breaks?. Trends Cell Biol 30:87–96
    [Google Scholar]
  15. 15. 
    Bhargava R, Onyango DO, Stark JM. 2016. Regulation of single-strand annealing and its role in genome maintenance. Trends Genet 32:566–75
    [Google Scholar]
  16. 16. 
    Boersma V, Moatti N, Segura-Bayona S, Peuscher MH, van der Torre J et al. 2015. MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5′ end resection. Nature 521:537–40
    [Google Scholar]
  17. 17. 
    Bonetti D, Clerici M, Manfrini N, Lucchini G, Longhese MP. 2010. The MRX complex plays multiple functions in resection of Yku- and Rif2-protected DNA ends. PLOS ONE 5:e14142
    [Google Scholar]
  18. 18. 
    Bouwman P, Aly A, Escandell JM, Pieterse M, Bartkova J et al. 2010. 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nat. Struct. Mol. Biol. 17:688–95
    [Google Scholar]
  19. 19. 
    Bunting SF, Callén E, Wong N, Chen HT, Polato F et al. 2010. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141:243–54
    [Google Scholar]
  20. 20. 
    Callen E, Di Virgilio M, Kruhlak MJ, Nieto-Soler M, Wong N et al. 2013. 53BP1 mediates productive and mutagenic DNA repair through distinct phosphoprotein interactions. Cell 153:1266–80
    [Google Scholar]
  21. 21. 
    Callen E, Zong D, Wu W, Wong N, Stanlie A et al. 2020. 53BP1 enforces distinct pre- and post-resection blocks on homologous recombination. Mol. Cell 77:26–38.e7
    [Google Scholar]
  22. 22. 
    Cannavo E, Cejka P. 2014. Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks. Nature 514:122–25
    [Google Scholar]
  23. 23. 
    Cannavo E, Cejka P, Kowalczykowski SC 2013. Relationship of DNA degradation by Saccharomyces cerevisiae Exonuclease 1 and its stimulation by RPA and Mre11-Rad50-Xrs2 to DNA end resection. PNAS 110:E1661–68
    [Google Scholar]
  24. 24. 
    Cannavo E, Johnson D, Andres SN, Kissling VM, Reinert JK et al. 2018. Regulatory control of DNA end resection by Sae2 phosphorylation. Nat. Commun. 9:4016
    [Google Scholar]
  25. 25. 
    Cannavo E, Reginato G, Cejka P 2019. Stepwise 5′ DNA end-specific resection of DNA breaks by the Mre11-Rad50-Xrs2 and Sae2 nuclease ensemble. PNAS 116:5505–13
    [Google Scholar]
  26. 26. 
    Cannon B, Kuhnlein J, Yang SH, Cheng A, Schindler D et al. 2013. Visualization of local DNA unwinding by Mre11/Rad50/Nbs1 using single-molecule FRET. PNAS 110:18868–73
    [Google Scholar]
  27. 27. 
    Cassani C, Gobbini E, Wang W, Niu H, Clerici M et al. 2016. Tel1 and Rif2 regulate MRX functions in end-tethering and repair of DNA double-strand breaks. PLOS Biol 14:e1002387
    [Google Scholar]
  28. 28. 
    Cejka P, Cannavo E, Polaczek P, Masuda-Sasa T, Pokharel S et al. 2010. DNA end resection by Dna2-Sgs1-RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2. Nature 467:112–16
    [Google Scholar]
  29. 29. 
    Ceppi I, Howard SM, Kasaciunaite K, Pinto C, Anand R et al. 2020. CtIP promotes the motor activity of DNA2 to accelerate long-range DNA end resection. PNAS 117:8859–69
    [Google Scholar]
  30. 30. 
    Chanut P, Britton S, Coates J, Jackson SP, Calsou P. 2016. Coordinated nuclease activities counteract Ku at single-ended DNA double-strand breaks. Nat. Commun. 7:12889
    [Google Scholar]
  31. 31. 
    Chapman JR, Barral P, Vannier JB, Borel V, Steger M et al. 2013. RIF1 is essential for 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand break resection. Mol. Cell 49:858–71
    [Google Scholar]
  32. 32. 
    Chapman JR, Sossick AJ, Boulton SJ, Jackson SP. 2012. BRCA1-associated exclusion of 53BP1 from DNA damage sites underlies temporal control of DNA repair. J. Cell Sci. 125:3529–34
    [Google Scholar]
  33. 33. 
    Chappidi N, Nascakova Z, Boleslavska B, Zellweger R, Isik E et al. 2020. Fork cleavage-religation cycle and active transcription mediate replication restart after fork stalling at co-transcriptional R-loops. Mol. Cell 77:528–41.e8
    [Google Scholar]
  34. 34. 
    Cheblal A, Challa K, Seeber A, Shimada K, Yoshida H et al. 2020. DNA damage-induced nucleosome depletion enhances homology search independently of local break movement. Mol. Cell 80:311–26.e4
    [Google Scholar]
  35. 35. 
    Chen H, Lisby M, Symington LS. 2013. RPA coordinates DNA end resection and prevents formation of DNA hairpins. Mol. Cell 50:589–600
    [Google Scholar]
  36. 36. 
    Chen X, Cui D, Papusha A, Zhang X, Chu C-D et al. 2012. The Fun30 nucleosome remodeller promotes resection of DNA double-strand break ends. Nature 489:576–80
    [Google Scholar]
  37. 37. 
    Chen X, Niu H, Chung W-H, Zhu Z, Papusha A et al. 2011. Cell cycle regulation of DNA double-strand break end resection by Cdk1-dependent Dna2 phosphorylation. Nat. Struct. Mol. Biol. 18:1015–19
    [Google Scholar]
  38. 38. 
    Chung WH, Zhu Z, Papusha A, Malkova A, Ira G 2010. Defective resection at DNA double-strand breaks leads to de novo telomere formation and enhances gene targeting. PLOS Genet 6:e1000948
    [Google Scholar]
  39. 39. 
    Ciccia A, Bredemeyer AL, Sowa ME, Terret M-E, Jallepalli PV et al. 2009. The SIOD disorder protein SMARCAL1 is an RPA-interacting protein involved in replication fork restart. Genes Dev 23:2415–25
    [Google Scholar]
  40. 40. 
    Ciccia A, Nimonkar AV, Hu Y, Hajdu I, Achar YJ et al. 2012. Polyubiquitinated PCNA recruits the ZRANB3 translocase to maintain genomic integrity after replication stress. Mol. Cell 47:396–409
    [Google Scholar]
  41. 41. 
    Clairmont CS, Sarangi P, Ponnienselvan K, Galli LD, Csete I et al. 2020. TRIP13 regulates DNA repair pathway choice through REV7 conformational change. Nat. Cell Biol. 22:87–96
    [Google Scholar]
  42. 42. 
    Colnaghi R, Carpenter G, Volker M, O'Driscoll M. 2011. The consequences of structural genomic alterations in humans: genomic disorders, genomic instability and cancer. Semin. Cell Dev. Biol. 22:875–85
    [Google Scholar]
  43. 43. 
    Connelly JC, de Leau ES, Leach DR. 2003. Nucleolytic processing of a protein-bound DNA end by the E. coli SbcCD (MR) complex. DNA Repair 2:795–807
    [Google Scholar]
  44. 44. 
    Coquel F, Silva MJ, Techer H, Zadorozhny K, Sharma S et al. 2018. SAMHD1 acts at stalled replication forks to prevent interferon induction. Nature 557:57–61
    [Google Scholar]
  45. 45. 
    Cruz-García A, López-Saavedra A, Huertas P. 2014. BRCA1 accelerates CtIP-mediated DNA-end resection. Cell Rep 9:451–59
    [Google Scholar]
  46. 46. 
    Daddacha W, Koyen AE, Bastien AJ, Head PE, Dhere VR et al. 2017. SAMHD1 promotes DNA end resection to facilitate DNA repair by homologous recombination. Cell Rep 20:1921–35
    [Google Scholar]
  47. 47. 
    Daley JM, Tomimatsu N, Hooks G, Wang W, Miller AS et al. 2020. Specificity of end resection pathways for double-strand break regions containing ribonucleotides and base lesions. Nat. Commun. 11:3088
    [Google Scholar]
  48. 48. 
    Desai-Mehta A, Cerosaletti KM, Concannon P. 2001. Distinct functional domains of nibrin mediate Mre11 binding, focus formation, and nuclear localization. Mol. Cell. Biol. 21:2184–91
    [Google Scholar]
  49. 49. 
    Deshpande RA, Lee J-H, Arora S, Paull TT. 2016. Nbs1 converts the human Mre11/Rad50 nuclease complex into an endo/exonuclease machine specific for protein-DNA adducts. Mol. Cell 64:593–606
    [Google Scholar]
  50. 50. 
    Deshpande RA, Myler LR, Soniat MM, Makharashvili N, Lee L et al. 2020. DNA-dependent protein kinase promotes DNA end processing by MRN and CtIP. Sci. Adv 6:eaay0922
    [Google Scholar]
  51. 51. 
    Deshpande RA, Williams GJ, Limbo O, Williams RS, Kuhnlein J et al. 2014. ATP-driven Rad50 conformations regulate DNA tethering, end resection, and ATM checkpoint signaling. EMBO J 33:482–500
    [Google Scholar]
  52. 52. 
    Dev H, Chiang T-WW, Lescale C, de Krijger I, Martin AG et al. 2018. Shieldin complex promotes DNA end-joining and counters homologous recombination in BRCA1-null cells. Nat. Cell Biol. 20:954–65
    [Google Scholar]
  53. 53. 
    Di Virgilio M, Callen E, Yamane A, Zhang W, Jankovic M et al. 2013. Rif1 prevents resection of DNA breaks and promotes immunoglobulin class switching. Science 339:711–15
    [Google Scholar]
  54. 54. 
    Dion V, Kalck V, Horigome C, Towbin BD, Gasser SM. 2012. Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery. Nat. Cell Biol. 14:502–9
    [Google Scholar]
  55. 55. 
    Escribano-Diaz C, Orthwein A, Fradet-Turcotte A, Xing M, Young JT et al. 2013. A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol. Cell 49:872–83
    [Google Scholar]
  56. 56. 
    Ferrari M, Dibitetto D, De Gregorio G, Eapen VV, Rawal CC et al. 2015. Functional interplay between the 53BP1-ortholog Rad9 and the Mre11 complex regulates resection, end-tethering and repair of a double-strand break. PLOS Genet 11:e1004928
    [Google Scholar]
  57. 57. 
    Gao S, Feng S, Ning S, Liu J, Zhao H et al. 2018. An OB-fold complex controls the repair pathways for DNA double-strand breaks. Nat. Commun. 9:3925
    [Google Scholar]
  58. 58. 
    Garcia V, Phelps SEL, Gray S, Neale MJ. 2011. Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1. Nature 479:241–44
    [Google Scholar]
  59. 59. 
    Garzón J, Ursich S, Lopes M, Hiraga S-I, Donaldson AD. 2019. Human RIF1-protein phosphatase 1 prevents degradation and breakage of nascent DNA on replication stalling. Cell Rep 27:2558–66.e4
    [Google Scholar]
  60. 60. 
    Ghezraoui H, Oliveira C, Becker JR, Bilham K, Moralli D et al. 2018. 53BP1 cooperation with the REV7-shieldin complex underpins DNA structure-specific NHEJ. Nature 560:122–27
    [Google Scholar]
  61. 61. 
    Gobbini E, Casari E, Colombo CV, Bonetti D, Longhese MP. 2020. The 9-1-1 complex controls Mre11 nuclease and checkpoint activation during short-range resection of DNA double-strand breaks. Cell Rep 33:108287
    [Google Scholar]
  62. 62. 
    Gobbini E, Cassani C, Vertemara J, Wang W, Mambretti F et al. 2018. The MRX complex regulates Exo1 resection activity by altering DNA end structure. EMBO J 37:e98588
    [Google Scholar]
  63. 63. 
    Gobbini E, Villa M, Gnugnoli M, Menin L, Clerici M, Longhese MP. 2015. Sae2 function at DNA double-strand breaks is bypassed by dampening Tel1 or Rad53 activity. PLOS Genet 11:e1005685
    [Google Scholar]
  64. 64. 
    Gravel S, Chapman JR, Magill C, Jackson SP. 2008. DNA helicases Sgs1 and BLM promote DNA double-strand break resection. Genes Dev 22:2767–72
    [Google Scholar]
  65. 65. 
    Gupta R, Somyajit K, Narita T, Maskey E, Stanlie A et al. 2018. DNA repair network analysis reveals shieldin as a key regulator of NHEJ and PARP inhibitor sensitivity. Cell 173:972–88.e23
    [Google Scholar]
  66. 66. 
    Hailemariam S, De Bona P, Galletto R, Hohl M, Petrini JH, Burgers PM. 2019. The telomere-binding protein Rif2 and ATP-bound Rad50 have opposing roles in the activation of yeast Tel1ATM kinase. J. Biol. Chem. 294:18846–52
    [Google Scholar]
  67. 67. 
    Hashimoto Y, Ray Chaudhuri A, Lopes M, Costanzo V 2010. Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis. Nat. Struct. Mol. Biol. 17:1305–11
    [Google Scholar]
  68. 68. 
    He YJ, Meghani K, Caron M-C, Yang C, Ronato DA et al. 2018. DYNLL1 binds to MRE11 to limit DNA end resection in BRCA1-deficient cells. Nature 563:522–26
    [Google Scholar]
  69. 69. 
    Higgs MR, Reynolds JJ, Winczura A, Blackford AN, Borel V et al. 2015. BOD1L is required to suppress deleterious resection of stressed replication forks. Mol. Cell 59:462–77
    [Google Scholar]
  70. 70. 
    Higgs MR, Sato K, Reynolds JJ, Begum S, Bayley R et al. 2018. Histone methylation by SETD1A protects nascent DNA through the nucleosome chaperone activity of FANCD2. Mol. Cell 71:25–41.e6
    [Google Scholar]
  71. 71. 
    Hohl M, Kochańczyk T, Tous C, Aguilera A, Krężel A, Petrini JH. 2015. Interdependence of the Rad50 hook and globular domain functions. Mol. Cell 57:479–91
    [Google Scholar]
  72. 72. 
    Hopfner K-P, Craig L, Moncalian G, Zinkel RA, Usui T et al. 2002. The Rad50 zinc-hook is a structure joining Mre11 complexes in DNA recombination and repair. Nature 418:562–66
    [Google Scholar]
  73. 73. 
    Hopfner KP, Karcher A, Craig L, Woo TT, Carney JP, Tainer JA. 2001. Structural biochemistry and interaction architecture of the DNA double-strand break repair Mre11 nuclease and Rad50-ATPase. Cell 105:473–85
    [Google Scholar]
  74. 74. 
    Huertas P, Cortes-Ledesma F, Sartori AA, Aguilera A, Jackson SP. 2008. CDK targets Sae2 to control DNA-end resection and homologous recombination. Nature 455:689–92
    [Google Scholar]
  75. 75. 
    Huertas P, Jackson SP. 2009. Human CtIP mediates cell cycle control of DNA end resection and double strand break repair. J. Biol. Chem. 284:9558–65
    [Google Scholar]
  76. 76. 
    Iannascoli C, Palermo V, Murfuni I, Franchitto A, Pichierri P. 2015. The WRN exonuclease domain protects nascent strands from pathological MRE11/EXO1-dependent degradation. Nucleic Acids Res 43:9788–803
    [Google Scholar]
  77. 76a. 
    Isobe S-Y, Hiraga S-I, Nagao K, Sasanuma H, Donaldson AD, Obuse C 2021. Protein phosphatase 1 acts as a RIF1 effector to suppress DSB resection prior to Shieldin action. Cell Rep 36:109383
    [Google Scholar]
  78. 77. 
    Jachimowicz RD, Beleggia F, Isensee J, Velpula BB, Goergens J et al. 2019. UBQLN4 represses homologous recombination and is overexpressed in aggressive tumors. Cell 176:505–19.e22
    [Google Scholar]
  79. 78. 
    Kao H-I, Campbell JL, Bambara RA. 2004. Dna2p helicase/nuclease is a tracking protein, like FEN1, for flap cleavage during Okazaki fragment maturation. J. Biol. Chem. 279:50840–49
    [Google Scholar]
  80. 79. 
    Käshammer L, Saathoff J-H, Lammens K, Gut F, Bartho J et al. 2019. Mechanism of DNA end sensing and processing by the Mre11-Rad50 complex. Mol. Cell 76:382–94.e6
    [Google Scholar]
  81. 80. 
    Keeney S, Kleckner N 1995. Covalent protein-DNA complexes at the 5′ strand termini of meiosis-specific double-strand breaks in yeast. PNAS 92:11274–78
    [Google Scholar]
  82. 80a. 
    Khayat F, Cannavo E, Alshmery M, Foster WR, Chahwan Cet al 2021. Inhibition of MRN activity by a telomere protein motif. Nat. Commun 12:3856
    [Google Scholar]
  83. 81. 
    Kim JH, Grosbart M, Anand R, Wyman C, Cejka P, Petrini JHJ. 2017. The Mre11-Nbs1 interface is essential for viability and tumor suppression. Cell Rep 18:496–507
    [Google Scholar]
  84. 82. 
    Kim JJ, Lee SY, Choi J-H, Woo HG, Xhemalce B, Miller KM. 2020. PCAF-mediated histone acetylation promotes replication fork degradation by MRE11 and EXO1 in BRCA-deficient cells. Mol. Cell 80:327–44.e8
    [Google Scholar]
  85. 83. 
    Kolinjivadi AM, Sannino V, De Antoni A, Zadorozhny K, Kilkenny M et al. 2017. Smarcal1-mediated fork reversal triggers Mre11-dependent degradation of nascent DNA in the absence of Brca2 and stable Rad51 nucleofilaments. Mol. Cell 67:867–81.e7
    [Google Scholar]
  86. 84. 
    Langerak P, Mejia-Ramirez E, Limbo O, Russell P. 2011. Release of Ku and MRN from DNA ends by Mre11 nuclease activity and Ctp1 is required for homologous recombination repair of double-strand breaks. PLOS Genet 7:e1002271
    [Google Scholar]
  87. 85. 
    Larsen NB, Liberti SE, Vogel I, Jorgensen SW, Hickson ID, Mankouri HW 2017. Stalled replication forks generate a distinct mutational signature in yeast. PNAS 114:9665–70
    [Google Scholar]
  88. 86. 
    Lazzaro F, Sapountzi V, Granata M, Pellicioli A, Vaze M et al. 2008. Histone methyltransferase Dot1 and Rad9 inhibit single-stranded DNA accumulation at DSBs and uncapped telomeres. EMBO J 27:1502–12
    [Google Scholar]
  89. 87. 
    Leland BA, Chen AC, Zhao AY, Wharton RC, King MC 2018. Rev7 and 53BP1/Crb2 prevent RecQ helicase-dependent hyper-resection of DNA double-strand breaks. eLife 7:e33402
    [Google Scholar]
  90. 88. 
    Lemaçon D, Jackson J, Quinet A, Brickner JR, Li S et al. 2017. MRE11 and EXO1 nucleases degrade reversed forks and elicit MUS81-dependent fork rescue in BRCA2-deficient cells. Nat. Commun. 8:860
    [Google Scholar]
  91. 89. 
    Levikova M, Klaue D, Seidel R, Cejka P 2013. Nuclease activity of Saccharomyces cerevisiae Dna2 inhibits its potent DNA helicase activity. PNAS 110:E1992–2001
    [Google Scholar]
  92. 90. 
    Levikova M, Pinto C, Cejka P. 2017. The motor activity of DNA2 functions as an ssDNA translocase to promote DNA end resection. Genes Dev 31:493–502
    [Google Scholar]
  93. 91. 
    Llorente B, Symington LS. 2004. The Mre11 nuclease is not required for 5′ to 3′ resection at multiple HO-induced double-strand breaks. Mol. Cell. Biol. 24:9682–94
    [Google Scholar]
  94. 92. 
    Lobachev KS, Gordenin DA, Resnick MA. 2002. The Mre11 complex is required for repair of hairpin-capped double-strand breaks and prevention of chromosome rearrangements. Cell 108:183–93
    [Google Scholar]
  95. 93. 
    Marsella A, Gobbini E, Cassani C, Tisi R, Cannavo E et al. 2021. Sae2 and Rif2 regulate MRX endonuclease activity at DNA double-strand breaks in opposite manners. Cell Rep 34:108906
    [Google Scholar]
  96. 94. 
    Martina M, Bonetti D, Villa M, Lucchini G, Longhese MP. 2014. Saccharomyces cerevisiae Rif1 cooperates with MRX-Sae2 in promoting DNA-end resection. EMBO Rep 15:695–704
    [Google Scholar]
  97. 95. 
    Mattarocci S, Reinert JK, Bunker RD, Fontana GA, Shi T et al. 2017. Rif1 maintains telomeres and mediates DNA repair by encasing DNA ends. Nat. Struct. Mol. Biol. 24:588–95
    [Google Scholar]
  98. 96. 
    Mendez-Dorantes C, Bhargava R, Stark JM. 2018. Repeat-mediated deletions can be induced by a chromosomal break far from a repeat, but multiple pathways suppress such rearrangements. Genes Dev 32:524–36
    [Google Scholar]
  99. 97. 
    Mijic S, Zellweger R, Chappidi N, Berti M, Jacobs K et al. 2017. Replication fork reversal triggers fork degradation in BRCA2-defective cells. Nat. Commun. 8:859
    [Google Scholar]
  100. 98. 
    Miller AS, Daley JM, Pham NT, Niu H, Xue X et al. 2017. A novel role of the Dna2 translocase function in DNA break resection. Genes Dev 31:503–10
    [Google Scholar]
  101. 99. 
    Mimitou EP, Symington LS. 2008. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455:770–74
    [Google Scholar]
  102. 100. 
    Mimitou EP, Symington LS. 2009. DNA end resection: Many nucleases make light work. DNA Repair 8:983–95
    [Google Scholar]
  103. 101. 
    Mimitou EP, Symington LS. 2010. Ku prevents Exo1 and Sgs1-dependent resection of DNA ends in the absence of a functional MRX complex or Sae2. EMBO J 29:3358–69
    [Google Scholar]
  104. 102. 
    Mimitou EP, Yamada S, Keeney S. 2017. A global view of meiotic double-strand break end resection. Science 355:40–45
    [Google Scholar]
  105. 103. 
    Mine-Hattab J, Rothstein R. 2012. Increased chromosome mobility facilitates homology search during recombination. Nat. Cell Biol. 14:510–17
    [Google Scholar]
  106. 104. 
    Mirman Z, de Lange T. 2020. 53BP1: a DSB escort. Genes Dev 34:7–23
    [Google Scholar]
  107. 105. 
    Mirman Z, Lottersberger F, Takai H, Kibe T, Gong Y et al. 2018. 53BP1-RIF1-shieldin counteracts DSB resection through CST- and Polα-dependent fill-in. Nature 560:112–16
    [Google Scholar]
  108. 106. 
    Monerawela C, Hiraga S-I, Donaldson AD. 2020. Checkpoint phosphorylation sites on budding yeast Rif1 protect nascent DNA from degradation by Sgs1-Dna2. bioRxiv 2020.06.25.170571. https://doi.org/10.1101/2020.06.25.170571
    [Crossref]
  109. 107. 
    Morin I, Ngo HP, Greenall A, Zubko MK, Morrice N, Lydall D. 2008. Checkpoint-dependent phosphorylation of Exo1 modulates the DNA damage response. EMBO J 27:2400–10
    [Google Scholar]
  110. 108. 
    Moynahan ME, Jasin M. 2010. Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat. Rev. Mol. Cell Biol. 11:196–207
    [Google Scholar]
  111. 109. 
    Mukherjee C, Tripathi V, Manolika EM, Heijink AM, Ricci G et al. 2019. RIF1 promotes replication fork protection and efficient restart to maintain genome stability. Nat. Commun. 10:3287
    [Google Scholar]
  112. 110. 
    Myler LR, Gallardo IF, Soniat MM, Deshpande RA, Gonzalez XB et al. 2017. Single-molecule imaging reveals how Mre11-Rad50-Nbs1 initiates DNA break repair. Mol. Cell 67:891–98.e4
    [Google Scholar]
  113. 111. 
    Myler LR, Gallardo IF, Zhou Y, Gong F, Yang SH et al. 2016. Single-molecule imaging reveals the mechanism of Exo1 regulation by single-stranded DNA binding proteins. PNAS 113:E1170–79
    [Google Scholar]
  114. 112. 
    Nakamura K, Kogame T, Oshiumi H, Shinohara A, Sumitomo Y et al. 2010. Collaborative action of Brca1 and CtIP in elimination of covalent modifications from double-strand breaks to facilitate subsequent break repair. PLOS Genet 6:e1000828
    [Google Scholar]
  115. 113. 
    Nakamura K, Saredi G, Becker JR, Foster BM, Nguyen NV et al. 2019. H4K20me0 recognition by BRCA1-BARD1 directs homologous recombination to sister chromatids. Nat. Cell Biol. 21:311–18
    [Google Scholar]
  116. 114. 
    Nath S, Nagaraju G. 2020. FANCJ helicase promotes DNA end resection by facilitating CtIP recruitment to DNA double-strand breaks. PLOS Genet 16:e1008701
    [Google Scholar]
  117. 115. 
    Ngo GH, Lydall D. 2015. The 9-1-1 checkpoint clamp coordinates resection at DNA double strand breaks. Nucleic Acids Res 43:5017–32
    [Google Scholar]
  118. 116. 
    Nicolette ML, Lee K, Guo Z, Rani M, Chow JM et al. 2010. Mre11-Rad50-Xrs2 and Sae2 promote 5′ strand resection of DNA double-strand breaks. Nat. Struct. Mol. Biol. 17:1478–85
    [Google Scholar]
  119. 117. 
    Nimonkar AV, Genschel J, Kinoshita E, Polaczek P, Campbell JL et al. 2011. BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair. Genes Dev 25:350–62
    [Google Scholar]
  120. 118. 
    Niu H, Chung WH, Zhu Z, Kwon Y, Zhao W et al. 2010. Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae. Nature 467:108–11
    [Google Scholar]
  121. 119. 
    Noordermeer SM, Adam S, Setiaputra D, Barazas M, Pettitt SJ et al. 2018. The shieldin complex mediates 53BP1-dependent DNA repair. Nature 560:117–21
    [Google Scholar]
  122. 120. 
    Oh J, Al-Zain A, Cannavo E, Cejka P, Symington LS. 2016. Xrs2 dependent and independent functions of the Mre11-Rad50 complex. Mol. Cell 64:405–15
    [Google Scholar]
  123. 121. 
    Paiano J, Wu W, Yamada S, Sciascia N, Callen E et al. 2020. ATM and PRDM9 regulate SPO11-bound recombination intermediates during meiosis. Nat. Commun. 11:857
    [Google Scholar]
  124. 122. 
    Pardo B, Moriel-Carretero M, Vicat T, Aguilera A, Pasero P. 2020. Homologous recombination and Mus81 promote replication completion in response to replication fork blockage. EMBO Rep 21:e49367
    [Google Scholar]
  125. 123. 
    Paull TT, Gellert M. 1998. The 3′ to 5′ exonuclease activity of Mre11 facilitates repair of DNA double-strand breaks. Mol. Cell 1:969–79
    [Google Scholar]
  126. 124. 
    Pinto C, Kasaciunaite K, Seidel R, Cejka P 2016. Human DNA2 possesses a cryptic DNA unwinding activity that functionally integrates with BLM or WRN helicases. eLife 5:e18574
    [Google Scholar]
  127. 125. 
    Polato F, Callen E, Wong N, Faryabi R, Bunting S et al. 2014. CtIP-mediated resection is essential for viability and can operate independently of BRCA1. J. Exp. Med. 211:1027–36
    [Google Scholar]
  128. 126. 
    Porebski B, Wild S, Kummer S, Scaglione S, Gaillard P-HL, Gari K 2019. WRNIP1 protects reversed DNA replication forks from SLX4-dependent nucleolytic cleavage. iScience 21:31–41
    [Google Scholar]
  129. 127. 
    Przetocka S, Porro A, Bolck HA, Walker C, Lezaja A et al. 2018. CtIP-mediated fork protection synergizes with BRCA1 to suppress genomic instability upon DNA replication stress. Mol. Cell 72:568–82.e6
    [Google Scholar]
  130. 128. 
    Ranjha L, Howard SM, Cejka P. 2018. Main steps in DNA double-strand break repair: an introduction to homologous recombination and related processes. Chromosoma 127:187–214
    [Google Scholar]
  131. 129. 
    Ray Chaudhuri A, Callen E, Ding X, Gogola E, Duarte AA et al. 2016. Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature 535:382–87
    [Google Scholar]
  132. 130. 
    Ray Chaudhuri A, Hashimoto Y, Herrador R, Neelsen KJ, Fachinetti D et al. 2012. Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nat. Struct. Mol. Biol. 19:417–23
    [Google Scholar]
  133. 131. 
    Reczek CR, Szabolcs M, Stark JM, Ludwig T, Baer R. 2013. The interaction between CtIP and BRCA1 is not essential for resection-mediated DNA repair or tumor suppression. J. Cell Biol. 201:693–707
    [Google Scholar]
  134. 132. 
    Reginato G, Cannavo E, Cejka P. 2017. Physiological protein blocks direct the Mre11-Rad50-Xrs2 and Sae2 nuclease complex to initiate DNA end resection. Genes Dev 31:2325–30
    [Google Scholar]
  135. 133. 
    Rickman KA, Noonan RJ, Lach FP, Sridhar S, Wang AT et al. 2020. Distinct roles of BRCA2 in replication fork protection in response to hydroxyurea and DNA interstrand cross-links. Genes Dev 34:832–46
    [Google Scholar]
  136. 133a. 
    Roisné-Hamelin F, Pobiega S, Jézéquel K, Miron S, Dépagne Jet al 2021. Mechanism of MRX inhibition by Rif2 at telomeres. Nat. Commun 12:2763
    [Google Scholar]
  137. 134. 
    Rondinelli B, Gogola E, Yücel H, Duarte AA, van de Ven M et al. 2017. EZH2 promotes degradation of stalled replication forks by recruiting MUS81 through histone H3 trimethylation. Nat. Cell Biol. 19:1371–78
    [Google Scholar]
  138. 135. 
    Saini N, Gordenin DA. 2020. Hypermutation in single-stranded DNA. DNA Repair 91–92:102868
    [Google Scholar]
  139. 136. 
    Sartori AA, Lukas C, Coates J, Mistrik M, Fu S et al. 2007. Human CtIP promotes DNA end resection. Nature 450:509–14
    [Google Scholar]
  140. 137. 
    Schlacher K, Christ N, Siaud N, Egashira A, Wu H, Jasin M. 2011. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145:529–42 Correction. 2011. Cell 145:993
    [Google Scholar]
  141. 138. 
    Schlacher K, Wu H, Jasin M. 2012. A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell 22:106–16
    [Google Scholar]
  142. 139. 
    Schmid JA, Berti M, Walser F, Raso MC, Schmid F et al. 2018. Histone ubiquitination by the DNA damage response is required for efficient DNA replication in unperturbed S phase. Mol. Cell 71:897–910.e8
    [Google Scholar]
  143. 140. 
    Schrank BR, Aparicio T, Li Y, Chang W, Chait BT et al. 2018. Nuclear ARP2/3 drives DNA break clustering for homology-directed repair. Nature 559:61–66
    [Google Scholar]
  144. 141. 
    Setiaputra D, Durocher D. 2019. Shieldin—the protector of DNA ends. EMBO Rep 20:e47560
    [Google Scholar]
  145. 142. 
    Sfeir A, Symington LS. 2015. Microhomology-mediated end joining: a back-up survival mechanism or dedicated pathway?. Trends Biochem. Sci. 40:701–14
    [Google Scholar]
  146. 143. 
    Shibata A, Moiani D, Arvai AS, Perry J, Harding SM et al. 2014. DNA double-strand break repair pathway choice is directed by distinct MRE11 nuclease activities. Mol. Cell 53:7–18
    [Google Scholar]
  147. 144. 
    Shim EY, Chung WH, Nicolette ML, Zhang Y, Davis M et al. 2010. Saccharomyces cerevisiae Mre11/Rad50/Xrs2 and Ku proteins regulate association of Exo1 and Dna2 with DNA breaks. EMBO J 29:3370–80
    [Google Scholar]
  148. 145. 
    Shiotani B, Zou L. 2009. Single-stranded DNA orchestrates an ATM-to-ATR switch at DNA breaks. Mol. Cell 33:547–58
    [Google Scholar]
  149. 146. 
    Somyajit K, Spies J, Coscia F, Kirik U, Rask M-B et al. 2021. Homology-directed repair protects the replicating genome from metabolic assaults. Dev. Cell 56:461–77.e7
    [Google Scholar]
  150. 147. 
    Soniat MM, Myler LR, Kuo H-C, Paull TT, Finkelstein IJ. 2019. RPA phosphorylation inhibits DNA resection. Mol. Cell 75:145–53.e5
    [Google Scholar]
  151. 148. 
    Sriramachandran AM, Petrosino G, Méndez-Lago M, Schäfer AJ, Batista-Nascimento LS et al. 2020. Genome-wide nucleotide-resolution mapping of DNA replication patterns, single-strand breaks, and lesions by GLOE-Seq. Mol. Cell 78:975–85.e7
    [Google Scholar]
  152. 149. 
    Staples CJ, Barone G, Myers KN, Ganesh A, Gibbs-Seymour I et al. 2016. MRNIP/C5orf45 interacts with the MRN complex and contributes to the DNA damage response. Cell Rep 16:2565–75
    [Google Scholar]
  153. 150. 
    Sturzenegger A, Burdova K, Kanagaraj R, Levikova M, Pinto C et al. 2014. DNA2 cooperates with the WRN and BLM RecQ helicases to mediate long-range DNA end resection in human cells. J. Biol. Chem. 289:27314–26
    [Google Scholar]
  154. 151. 
    Symington LS, Gautier J. 2011. Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 45:247–71
    [Google Scholar]
  155. 152. 
    Symington LS, Rothstein R, Lisby M. 2014. Mechanisms and regulation of mitotic recombination in Saccharomyces cerevisiae. Genetics 198:795–835
    [Google Scholar]
  156. 153. 
    Taglialatela A, Alvarez S, Leuzzi G, Sannino V, Ranjha L et al. 2017. Restoration of replication fork stability in BRCA1- and BRCA2-deficient cells by inactivation of SNF2-family fork remodelers. Mol. Cell 68:414–30.e8
    [Google Scholar]
  157. 154. 
    Tatebe H, Lim CT, Konno H, Shiozaki K, Shinohara A et al. 2020. Rad50 zinc hook functions as a constitutive dimerization module interchangeable with SMC hinge. Nat. Commun. 11:370
    [Google Scholar]
  158. 155. 
    Thangavel S, Berti M, Levikova M, Pinto C, Gomathinayagam S et al. 2015. DNA2 drives processing and restart of reversed replication forks in human cells. J. Cell Biol. 208:545–62
    [Google Scholar]
  159. 156. 
    Tkáč J, Xu G, Adhikary H, Young JTF, Gallo D et al. 2016. HELB is a feedback inhibitor of DNA end resection. Mol. Cell 61:405–18
    [Google Scholar]
  160. 157. 
    Tran PT, Erdeniz N, Dudley S, Liskay RM. 2002. Characterization of nuclease-dependent functions of Exo1p in Saccharomyces cerevisiae. DNA Repair 1:895–912
    [Google Scholar]
  161. 158. 
    Truong LN, Li Y, Shi LZ, Hwang PY-H, He J et al. 2013. Microhomology-mediated end joining and homologous recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells. PNAS 110:7720–25
    [Google Scholar]
  162. 159. 
    Tsukamoto Y, Mitsuoka C, Terasawa M, Ogawa H, Ogawa T. 2005. Xrs2p regulates Mre11p translocation to the nucleus and plays a role in telomere elongation and meiotic recombination. Mol. Biol. Cell 16:597–608
    [Google Scholar]
  163. 160. 
    Wang AT, Kim T, Wagner JE, Conti BA, Lach FP et al. 2015. A dominant mutation in human RAD51 reveals its function in DNA interstrand crosslink repair independent of homologous recombination. Mol. Cell 59:478–90
    [Google Scholar]
  164. 161. 
    Wang H, Shi LZ, Wong CC, Han X, Hwang PY et al. 2013. The interaction of CtIP and Nbs1 connects CDK and ATM to regulate HR-mediated double-strand break repair. PLOS Genet 9:e1003277
    [Google Scholar]
  165. 162. 
    Wang W, Daley JM, Kwon Y, Krasner DS, Sung P. 2017. Plasticity of the Mre11-Rad50-Xrs2-Sae2 nuclease ensemble in the processing of DNA-bound obstacles. Genes Dev 31:2331–36
    [Google Scholar]
  166. 163. 
    Wang W, Daley JM, Kwon Y, Xue X, Krasner DS et al. 2018. A DNA nick at Ku-blocked double-strand break ends serves as an entry site for exonuclease 1 (Exo1) or Sgs1-Dna2 in long-range DNA end resection. J. Biol. Chem. 293:17061–69
    [Google Scholar]
  167. 164. 
    Waterman DP, Haber JE, Smolka MB. 2020. Checkpoint responses to DNA double-strand breaks. Annu. Rev. Biochem. 89:103–33
    [Google Scholar]
  168. 165. 
    Westmoreland JW, Resnick MA. 2016. Recombinational repair of radiation-induced double-strand breaks occurs in the absence of extensive resection. Nucleic Acids Res 44:695–704
    [Google Scholar]
  169. 166. 
    Weston R, Peeters H, Ahel D. 2012. ZRANB3 is a structure-specific ATP-dependent endonuclease involved in replication stress response. Genes Dev 26:1558–72
    [Google Scholar]
  170. 167. 
    Williams RS, Dodson GE, Limbo O, Yamada Y, Williams JS et al. 2009. Nbs1 flexibly tethers Ctp1 and Mre11-Rad50 to coordinate DNA double-strand break processing and repair. Cell 139:87–99
    [Google Scholar]
  171. 168. 
    Williams RS, Moncalian G, Williams JS, Yamada Y, Limbo O et al. 2008. Mre11 dimers coordinate DNA end bridging and nuclease processing in double-strand-break repair. Cell 135:97–109
    [Google Scholar]
  172. 169. 
    Wyatt HDM, Laister RC, Martin SR, Arrowsmith CH, West SC. 2017. The SMX DNA repair tri-nuclease. Mol. Cell 65:848–60.e11
    [Google Scholar]
  173. 170. 
    Xu G, Chapman JR, Brandsma I, Yuan J, Mistrik M et al. 2015. REV7 counteracts DNA double-strand break resection and affects PARP inhibition. Nature 521:541–44
    [Google Scholar]
  174. 171. 
    Xu S, Wu X, Wu L, Castillo A, Liu J et al. 2017. Abro1 maintains genome stability and limits replication stress by protecting replication fork stability. Genes Dev 31:1469–82
    [Google Scholar]
  175. 172. 
    Yamada S, Hinch AG, Kamido H, Zhang Y, Edelmann W, Keeney S. 2020. Molecular structures and mechanisms of DNA break processing in mouse meiosis. Genes Dev 34:806–18
    [Google Scholar]
  176. 173. 
    Yan Z, Xue C, Kumar S, Crickard JB, Yu Y et al. 2019. Rad52 restrains resection at DNA double-strand break ends in yeast. Mol. Cell 76:699–711.e6
    [Google Scholar]
  177. 174. 
    You Z, Shi LZ, Zhu Q, Wu P, Zhang YW et al. 2009. CtIP links DNA double-strand break sensing to resection. Mol. Cell 36:954–69
    [Google Scholar]
  178. 175. 
    Yu TY, Garcia VE, Symington LS. 2019. CDK and Mec1/Tel1-catalyzed phosphorylation of Sae2 regulate different responses to DNA damage. Nucleic Acids Res 47:11238–49
    [Google Scholar]
  179. 176. 
    Yu TY, Kimble MT, Symington LS 2018. Sae2 antagonizes Rad9 accumulation at DNA double-strand breaks to attenuate checkpoint signaling and facilitate end resection. PNAS 115:E11961–69
    [Google Scholar]
  180. 177. 
    Yuan J, Ghosal G, Chen J 2009. The annealing helicase HARP protects stalled replication forks. Genes Dev 23:2394–99
    [Google Scholar]
  181. 178. 
    Yuan J, Ghosal G, Chen J 2012. The HARP-like domain-containing protein AH2/ZRANB3 binds to PCNA and participates in cellular response to replication stress. Mol. Cell 47:410–21
    [Google Scholar]
  182. 179. 
    Zakharyevich K, Ma Y, Tang S, Hwang PY, Boiteux S, Hunter N. 2010. Temporally and biochemically distinct activities of Exo1 during meiosis: double-strand break resection and resolution of double Holliday junctions. Mol. Cell 40:1001–15
    [Google Scholar]
  183. 180. 
    Zdravković A, Daley JM, Dutta A, Niwa T, Murayama Y et al. 2021. A conserved Ctp1/CtIP C-terminal peptide stimulates Mre11 endonuclease activity. PNAS 118:e2016287118
    [Google Scholar]
  184. 181. 
    Zellweger R, Dalcher D, Mutreja K, Berti M, Schmid JA et al. 2015. Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells. J. Cell Biol. 208:563–79
    [Google Scholar]
  185. 182. 
    Zhou C, Pourmal S, Pavletich NP 2015. Dna2 nuclease-helicase structure, mechanism and regulation by Rpa. eLife 4:e09832
    [Google Scholar]
  186. 183. 
    Zhu Z, Chung WH, Shim EY, Lee SE, Ira G 2008. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 134:981–94
    [Google Scholar]
  187. 184. 
    Zimmermann M, Lottersberger F, Buonomo SB, Sfeir A, de Lange T. 2013. 53BP1 regulates DSB repair using Rif1 to control 5′ end resection. Science 339:700–4
    [Google Scholar]
/content/journals/10.1146/annurev-genet-071719-020312
Loading
/content/journals/10.1146/annurev-genet-071719-020312
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error