1932

Abstract

Magma fragmentation is the breakup of a continuous volume of molten rock into discrete pieces, called pyroclasts. Because magma contains bubbles of compressible magmatic volatiles, decompression of low-viscosity magma leads to rapid expansion. The magma is torn into fragments, as it is stretched into hydrodynamically unstable sheets and filaments. If the magma is highly viscous, resistance to bubble growth will instead lead to excess gas pressure and the magma will deform viscoelastically by fracturing like a glassy solid, resulting in the formation of a violently expanding gas-pyroclast mixture. In either case, fragmentation represents the conversion of potential energy into the surface energy of the newly created fragments and the kinetic energy of the expanding gas-pyroclast mixture. If magma comes into contact with external water, the conversion of thermal energy will vaporize water and quench magma at the melt-water interface, thus creating dynamic stresses that cause fragmentation and the release of kinetic energy. Lastly, shear deformation of highly viscous magma may cause brittle fractures and release seismic energy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-060614-105206
2015-05-30
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/earth/43/1/annurev-earth-060614-105206.html?itemId=/content/journals/10.1146/annurev-earth-060614-105206&mimeType=html&fmt=ahah

Literature Cited

  1. Alatorre-Ibargüengoitia MA, Scheu B, Dingwell DB, Delgado-Granados H, Taddeucci J. 2010. Energy consumption by magmatic fragmentation and pyroclast ejection during Vulcanian eruptions. Earth Planet. Sci. Lett. 291:60–69 [Google Scholar]
  2. Alidibirov M. 1994. A model for viscous magma fragmentation during volcanic blasts. Bull. Volcanol. 56:459–65 [Google Scholar]
  3. Alidibirov M, Dingwell DB. 1996. Magma fragmentation by rapid decompression. Nature 380:146–48 [Google Scholar]
  4. Batchelor GK. 1967. An Introduction to Fluid Dynamics Cambridge, UK: Cambridge Univ. Press
  5. Blower JD. 2001. Factors controlling permeability-porosity relationships in magma. Bull. Volcanol. 63:497–501 [Google Scholar]
  6. Board SJ, Farner CL, Poole DH. 1974. Fragmentation in thermal explosions. Int. J. Heat Mass Transfer. 17:331–39 [Google Scholar]
  7. Board SJ, Hall RW, Hall RS. 1975. Detonation of fuel coolant explosions. Nature 254:319–21 [Google Scholar]
  8. Branca S, Del Carlo P. 2005. Types of eruptions of Etna volcano AD 1670–2003: implications for short-term eruptive behavior. Bull. Volcanol. 67:732–42 [Google Scholar]
  9. Buchanan DJ, Dullforce TA. 1973. Mechanism for vapour explosions. Nature 245:32–34 [Google Scholar]
  10. Büttner R, Dellino P, Raue H, Sonder I, Zimanowski B. 2006. Stress-induced brittle fragmentation of magmatic melts: theory and experiments. J. Geophys. Res. 111:B08204 [Google Scholar]
  11. Büttner R, Dellino P, Zimanowski B. 1999. Identifying magma-water interaction from the surface features of ash particles. Nature 401:688–90 [Google Scholar]
  12. Büttner R, Zimanowski B, Mohrholz CO. 2005. Analysis of thermohydraulic explosion energetics. J. Appl. Phys. 98:043524 [Google Scholar]
  13. Buurman H, West ME. 2013. Magma fracture and hybrid earthquakes in the conduit of Augustine Volcano. Geophys. Res. Lett. 40:6038–42 [Google Scholar]
  14. Cabrera A, Weinberg RF, Wright HMN, Zlotnik S, Cas RAF. 2011. Melt fracturing and healing: a mechanism for degassing and origin of silicic obsidian. Geology 39:67–70 [Google Scholar]
  15. Castro JM, Bindeman IN, Tuffen H, Schipper I. 2014. Explosive origin of silicic lava: textural and δD–H2O evidence for pyroclastic degassing during rhyolite effusion. Earth Planet. Sci. Lett. 405:52–61 [Google Scholar]
  16. Castro JM, Cordonnier B, Tuffen H, Tobin MJ, Puskar L. et al. 2012. The role of melt-fracture degassing in defusing explosive rhyolite eruptions at volcán Chaitén. Earth Planet. Sci. Lett. 333–34:63–69 [Google Scholar]
  17. Clarke AB. 2013. Unsteady explosive activity: Vulcanian eruptions. See Fagents et al. 2013 129–52
  18. Cordonnier B, Caricchi L, Pistone M, Castro J, Hess KU. et al. 2012. The viscous-brittle transition of crystal-bearing silicic melt: direct observation of magma rupture and healing. Geology 40:611–14 [Google Scholar]
  19. Corradini ML. 1991. Vapor explosions: a review of experiments for accident analysis. Nucl. Saf. 32:337–62 [Google Scholar]
  20. Dingwell DB. 1996. Volcanic dilemma: flow or blow?. Science 273:1054–55 [Google Scholar]
  21. Dingwell DB. 1997. The brittle-ductile transition in high-level granitic magmas: material constraints. J. Petrol. 38:1635–44 [Google Scholar]
  22. Dingwell DB, Webb SL. 1989. Structural relaxation in silicate melts and non-Newtonian melt rheology in geological processes. Phys. Chem. Mater. 16:508–16 [Google Scholar]
  23. Dobran F. 1992. Nonequilibrium flow in volcanic conduits and application to the eruptions of Mt. St. Helens on May 19, 1980, and Vesuvius in AD 79. J. Volcanol. Geotherm. Res. 49:285–311 [Google Scholar]
  24. Dombrowski N, Fraser RP. 1954. A photographic investigation into the disintegration of liquid sheets. Philos. Trans. R. Soc. A 247:101–30 [Google Scholar]
  25. Dufek J, Bergantz GW. 2005. Transient two-dimensional dynamics in the upper conduit of a rhyolitic eruption: a comparison of closure models for granular stress. J. Volcanol. Geotherm. Res. 143:113–32 [Google Scholar]
  26. Dufek J, Manga M, Patel A. 2012. Granular disruption during explosive volcanic eruptions. Nat. Geosci. 5:561–64 [Google Scholar]
  27. Eggers J. 1993. Universal pinching of 3D axisymmetric free-surface flow. Phys. Rev. Lett. 71:3458–60 [Google Scholar]
  28. Eggers J, Villermaux E. 2008. Physics of liquid jets. Rep. Prog. Phys. 71:036601 [Google Scholar]
  29. Fagents SA, Gregg TKP, Lopes RMC. 2013. Modeling Volcanic Processes: The Physics and Mathematics of Volcanism New York: Cambridge Univ. Press
  30. Eichelberger JC. 1995. Silicic volcanism. Annu. Rev. Earth Planet. Sci. 23:41–63 [Google Scholar]
  31. Eichelberger JC, Carrigan CR, Westrich HR, Price RH. 1986. Non-explosive silicic volcanism. Nature 323:598–602 [Google Scholar]
  32. Geissler PE, McMillan MT. 2008. Galileo observations of volcanic plumes on Io. Icarus 197:505–18 [Google Scholar]
  33. Gerst A, Hort M, Aster RC, Johnson JB, Kyle PR. 2013. The first second of volcanic eruptions from the Erebus volcano lava lake, Antarctica—energies, pressures, seismology, and infrasound. J. Geophys. Res. Solid Earth 118:3318–40 [Google Scholar]
  34. Gerth U, Schnapp JD. 1996. Investigation of mechanical properties of natural glasses using indentation methods. Chem. Erde 56:398–403 [Google Scholar]
  35. Giachetti T, Druitt TH, Burgisser A, Arbaret L, Galven C. 2010. Bubble nucleation, growth and coalescence during the 1997 Vulcanian explosions of Soufrière Hills Volcano, Montserrat. J. Volcanol. Geotherm. Res. 193:215–31 [Google Scholar]
  36. Giordano D, Dingwell DB. 2003a. The kinetic fragility of natural silicate melts. J. Phys. Condens. Matter 15:S945–54 [Google Scholar]
  37. Giordano D, Dingwell DB. 2003b. Viscosity of hydrous Etna basalt: implications for Plinian-style basaltic eruptions. Bull. Volcanol. 65:8–14 [Google Scholar]
  38. Girault F, Carazzo G, Tait S, Ferrucci F, Kaminski É. 2014. The effect of total grain-size distribution on the dynamics of turbulent volcanic plumes. Earth Planet. Sci. Lett. 394:124–34 [Google Scholar]
  39. Goepfert K, Gardner JE. 2010. Influence of pre-eruptive storage conditions and volatile contents on explosive Plinian style eruptions of basic magma. Bull. Volcanol. 72:511–21 [Google Scholar]
  40. Gonnermann HM, Houghton BF. 2012. Magma degassing during the Plinian eruption of Novarupta, Alaska, 1912. Geochem. Geophys. Geosyst. 13:Q10009 [Google Scholar]
  41. Gonnermann HM, Manga M. 2003. Explosive volcanism may not be an inevitable consequence of magma fragmentation. Nature 426:432–35 [Google Scholar]
  42. Gonnermann HM, Manga M. 2005. Flow banding in obsidian: a record of evolving textural heterogeneity during magma fragmentation. Earth Planet. Sci. Lett. 236:135–47 [Google Scholar]
  43. Gonnermann HM, Manga M. 2007. The fluid mechanics inside a volcano. Annu. Rev. Fluid Mech. 39:321–56 [Google Scholar]
  44. Goto A. 1999. A new model for volcanic earthquake at Unzen Volcano: melt rupture model. Geophys. Res. Lett. 26:2541–44 [Google Scholar]
  45. Grady DE. 1982. Local inertial effects in dynamic fragmentation. J. Appl. Phys. 53:322–25 [Google Scholar]
  46. Grady DE. 2010. Length scales and size distributions in dynamic fragmentation. Int. J. Fract. 163:85–99 [Google Scholar]
  47. Guffanti M, Mayberry GC, Casadevall TJ, Wunerman R. 2008. Volcanic hazards to airports. Nat. Hazards. doi: 10.1007/s11069-008-9254-2
  48. Harrington RM, Brodsky EE. 2007. Volcanic hybrid earthquakes that are brittle-failure events. Geophys. Res. Lett. 34:L06308 [Google Scholar]
  49. Heiken G, Wohletz K. 1985. Volcanic Ash Berkeley/Los Angeles: Univ. Calif. Press
  50. Holland ASP, Watson IM, Phillips JC, Caricchi L, Dalton MP. 2011. Degassing processes during lava dome growth: insights from Santiaguito lava dome, Guatemala. J. Volcanol. Geotherm. Res. 202:153–66 [Google Scholar]
  51. Horwell CJ, Baxter PJ. 2006. The respiratory health hazards of volcanic ash: a review for volcanic risk mitigation. Bull. Volcanol. 69:1–24 [Google Scholar]
  52. Houghton BF, Gonnermann HM. 2008. Basaltic explosive volcanism: constraints from deposits and models. Chem. Erde 68:117–40 [Google Scholar]
  53. Houghton BF, Rymer H, Stix J, McNutt S, Sigurdsson H. 2000a. Encyclopedia of Volcanoes San Diego, CA: Academic
  54. Houghton BF, Wilson CJN, Smith RT, Gilbert JS. 2000b. Phreatoplinian eruptions. See Houghton et al. 2000a 513–25
  55. Hui HJ, Zhang YX. 2007. Toward a general viscosity equation for natural anhydrous and hydrous silicate melts. Geochim. Cosmochim. Acta 71:403–16 [Google Scholar]
  56. Huisman FM, Friedman SR, Taborek P. 2012. Pinch-off dynamics in foams, emulsions and suspensions. Soft Matter 8:6767–74 [Google Scholar]
  57. Ichihara M, Rittel D, Sturtevant B. 2002. Fragmentation of a porous viscoelastic material: implications to magma fragmentation. J. Geophys. Res. 107:B102229 [Google Scholar]
  58. Israelachvili JN. 2011. Intermolecular and Surface Forces. San Diego, CA: Academic, 3rd ed..
  59. James MR, Lane SJ, Houghton BF. 2013. Unsteady explosive activity: Strombolian eruptions. See Fagents et al. 2013 107–29
  60. Jellinek AM, DePaolo DJ. 2003. A model for the origin of large silicic magma chambers: precursors of caldera-forming eruptions. Bull. Volcanol. 65:363–81 [Google Scholar]
  61. Kaminski É, Jaupart C. 1998. The size distribution of pyroclasts and the fragmentation sequence in explosive volcanic eruptions. J. Geophys. Res. 103:B1229759–79 [Google Scholar]
  62. Kennedy LA, Russell JK, Nelles E. 2009. Origins of Mount St. Helens cataclasites: experimental insights. Am. Mineral. 94:995–1004 [Google Scholar]
  63. Kerrick E, Jacobs GK. 1981. A modified Redlich-Kwong equation for H2O, CO2, and H2O-CO2 mixtures at elevated pressures and temperatures. Am. J. Sci. 281:735–67 [Google Scholar]
  64. Klug C, Cashman KV. 1996. Permeability development in vesiculating magmas: implications for fragmentation. Bull. Volcanol. 58:87–100 [Google Scholar]
  65. Kolzenburg S, Russell JK, Kennedy LA. 2013. Energetics of glass fragmentation: experiments on synthetic and natural glasses. Geochem. Geophys. Geosyst. 14:4936–51 [Google Scholar]
  66. Koyaguchi T. 2005. An analytical study for 1-dimensional steady flow in volcanic conduits. J. Volcanol. Geotherm. Res. 143:29–52 [Google Scholar]
  67. Koyaguchi T, Mitani NK. 2005. A theoretical model for fragmentation of viscous bubbly magmas in shock tubes. J. Geophys. Res. 110:B10202 [Google Scholar]
  68. Koyaguchi T, Scheu B, Mitani NK, Melnik O. 2008. A fragmentation criterion for highly viscous bubble magmas estimated from shock tube experiments. J. Volcanol. Geotherm. Res. 178:58–71 [Google Scholar]
  69. Kowalewski TA. 1996. On the separation of droplets from a liquid jet. Fluid Dyn. Res. 17:121–45 [Google Scholar]
  70. Kueppers U, Perugini D, Dingwell DB. 2006a. “Explosive energy” during volcanic eruptions from fractal analysis of pyroclasts. Earth Planet. Sci. Lett. 248:800–7 [Google Scholar]
  71. Kueppers U, Scheu B, Spieler O, Dingwell DB. 2006b. Fragmentation efficiency of explosive volcanic eruptions: a study of experimentally generated pyroclasts. J. Volcanol. Geotherm. Res. 153:125–35 [Google Scholar]
  72. Langmann B, Folch A, Hensch M, Matthias V. 2012. Volcanic ash over Europe during the eruption of Eyjafjallajökull on Iceland, April–May 2010. Atmos. Environ. 48:1–8 [Google Scholar]
  73. Laumonier M, Arbaret L, Burgisser A, Champallier R. 2011. Porosity redistribution enhanced by strain localization in crystal-rich magmas. Geology 39:715–18 [Google Scholar]
  74. Lautze NC, Houghton BF. 2005. Physical mingling of magma and complex eruption dynamics in the shallow conduit at Stromboli volcano, Italy. Geology 33:425–28 [Google Scholar]
  75. Lavallée Y, Hess KU, Cordonier B, Dingwell DB. 2007. Non-Newtonian rheological law for highly crystalline dome lavas. Geology 35:843–46 [Google Scholar]
  76. Lavallée Y, Meredith PG, Dingwell DB, Hess KU, Wassermann J. et al. 2008. Seismogenic lavas and explosive eruption forecasting. Nature 453:507–10 [Google Scholar]
  77. Lensky NG, Lyakhovsky V, Navon O. 2001. Radial variations of melt viscosity around growing bubbles and gas overpressure in vesiculating magmas. Earth Planet. Sci. Lett. 186:1–6 [Google Scholar]
  78. Lin SP, Reitz RD. 1998. Drop and spray formation from a liquid jet. Annu. Rev. Fluid Mech. 30:85–105 [Google Scholar]
  79. Liu Y, Zhang YX, Behrens H. 2005. Solubility of H2O in rhyolitic melts at low pressures and a new empirical model for mixed H2O-CO2 solubility in rhyolitic melts. J. Volcanol. Geotherm. Res. 143:219–35 [Google Scholar]
  80. Mader HM. 1998. Conduit flow and fragmentation. Geol. Soc. Lond. Spec. Publ. 145:51–71 [Google Scholar]
  81. Mader HM, Llewellin EW, Mueller SP. 2013. The rheology of two-phase magmas: a review and analysis. J. Volcanol. Geotherm. Res. 257:135–58 [Google Scholar]
  82. Mader HM, Zhang Y, Phillips JC, Sparks RSJ, Sturtevant B, Stolper E. 1994. Experimental simulations of explosive degassing of magma. Nature 372:85–88 [Google Scholar]
  83. Manga M, Patel A, Dufek J. 2011. Rounding of pumice clasts during transport: field measurements and laboratory studies. Bull. Volcanol. 73:321–33 [Google Scholar]
  84. Mangan MT, Cashman KV. 1996. The structure of basaltic scoria and reticulite and inferences for vesiculation, foam formation, and fragmentation in lava fountains. J. Volcanol. Geotherm. Res. 73:1–18 [Google Scholar]
  85. Mann ME. 2007. Climate over the past two millennia. Annu. Rev. Earth Planet. Sci. 35:111–36 [Google Scholar]
  86. Martel C, Dingwell DB, Spieler O, Pichavant M, Wilke M. 2000. Fragmentation of foamed silicic melts: an experimental study. Earth Planet. Sci. Lett. 178:47–58 [Google Scholar]
  87. Martel C, Dingwell DB, Spieler O, Pichavant M, Wilke M. 2001. Experimental fragmentation of crystal- and vesicle-bearing silicic melts. Bull. Volcanol. 63:398–405 [Google Scholar]
  88. Martin RS, Watt SFL, Pyle DM, Mather TA, Matthews NE. et al. 2009. Environmental effects of ashfall in Argentina from the 2008 Chaitén volcanic eruption. J. Volcanol. Geotherm. Res. 184:462–72 [Google Scholar]
  89. Mastin LG. 2002. Insights into volcanic conduit flow from an open-source numerical model. Geochem. Geophys. Geosyst. 3: doi: 10.1029/2001GC000192 [Google Scholar]
  90. Mastin LG. 2005. The controlling effect of viscous dissipation on magma flow in silicic conduits. J. Volcanol. Geotherm. Res. 143:17–28 [Google Scholar]
  91. Mastin LG. 2007. Generation of fine hydromagmatic ash by growth and disintegration of glassy rinds. J. Geophys. Res. 112:B02203 [Google Scholar]
  92. Mastin LG, Spieler O, Downey WS. 2009. An experimental study of hydromagmatic fragmentation through energetic, non-explosive magma-water mixing. J. Volcanol. Geotherm. Res. 180:161–70 [Google Scholar]
  93. Miskin MZ, Jaeger HM. 2012. Droplet formation and scaling in dense suspensions. PNAS 109:4389–94 [Google Scholar]
  94. Moitra P, Gonnermann HM, Houghton BF. 2010. Rheological effects of microlites on the Plinian eruption of basaltic magma. Presented at AGU Fall Meet., Dec. 13–17, San Francisco. Abstr. V43B-2371
  95. Morrissey M, Zimanowski B, Wohletz K, Bütter R. 2000. Phreatomagmatic fragmentation. See Houghton et al. 2000a 430–45
  96. Moynihan CT. 1995. Structural relaxation and the glass transition. Rev. Mineral. Geochem. 32:1–19 [Google Scholar]
  97. Mueller S, Scheu B, Spieler O, Dingwell DB. 2008. Permeability control on magma fragmentation. Geology 36:399–402 [Google Scholar]
  98. Mungall JE, Bagdassarov S, Romano C, Dingwell DB. 1996. Numerical modelling of stress generation and microfracturing of vesicle walls in glassy rocks. J. Volcanol. Geotherm. Res. 73:33–46 [Google Scholar]
  99. Namiki A, Manga M. 2005. Response of a bubble bearing viscoelastic fluid to rapid decompression: implications for explosive volcanic eruptions. Earth Planet. Sci. Lett. 236:269–84 [Google Scholar]
  100. Namiki A, Manga M. 2008. Transition between fragmentation and permeable outgassing of low viscosity magmas. J. Volcanol. Geotherm. Res. 169:48–60 [Google Scholar]
  101. Nguyen CT, Gonnermann HM, Houghton BF. 2014. Explosive to effusive transition during the largest volcanic eruption of the 20th century (Novarupta 1912, Alaska). Geology 42:703–6 [Google Scholar]
  102. Okumura S, Nakamura M, Nakano T, Uesugi K, Tsuchiyama A. 2010. Shear deformation experiments on vesicular rhyolite: implications for brittle fracturing, degassing, and compaction of magmas in volcanic conduits. J. Geophys. Res. 115:B06201 [Google Scholar]
  103. Pallister JS, Cashman KV, Hagstrum JT, Beeler NM, Moran SC, Denlinger RP. 2013. Faulting within the Mount St. Helens conduit and implications for volcanic earthquakes. Geol. Soc. Am. Bull. 125:359–76 [Google Scholar]
  104. Papale P. 1999. Strain-induced magma fragmentation in explosive eruptions. Nature 397:425–28 [Google Scholar]
  105. Papale P. 2001. Dynamics of magma flow in volcanic conduits with variable fragmentation efficiency and nonequilibrium pumice degassing. J. Geophys. Res. 106:B611043–65 [Google Scholar]
  106. Parfitt EA. 2004. A discussion of the mechanisms of explosive basaltic eruptions. J. Volcanol. Geotherm. Res. 134:77–107 [Google Scholar]
  107. Patel A, Manga M, Carey RJ, Degruyter W. 2013. Effects of thermal quenching on mechanical properties of pyroclasts. J. Volcanol. Geotherm. Res. 258:24–30 [Google Scholar]
  108. Proussevitch AA, Sahagian DL, Anderson AT. 1993. Dynamics of diffusive bubble growth in magmas: isothermal case. J. Geophys. Res. 98:B1222283–307 [Google Scholar]
  109. Robock A. 2000. Volcanic eruptions and climate. Rev. Geophys. 38:191–219 [Google Scholar]
  110. Romano C, Mungall JE, Sharp T, Dingwell DB. 1996. Tensile strengths of hydrous vesicular glasses: an experimental study. Am. Mineral. 81:1148–54 [Google Scholar]
  111. Rust AC, Cashman KV. 2004. Permeability of vesicular silicic magma: inertial and hysteresis effects. Earth Planet. Sci. Lett. 228:93–107 [Google Scholar]
  112. Rust AC, Cashman KV. 2011. Permeability controls on expansion and size distributions of pyroclasts. J. Geophys. Res. 116:B11202 [Google Scholar]
  113. Rust AC, Cashman KV, Wallace PJ. 2004. Magma degassing buffered by vapor flow through brecciated conduit margins. Geology 32:349–52 [Google Scholar]
  114. Rutherford MJ, Papale P. 2009. Origin of basalt fire-fountain eruptions on Earth versus the Moon. Geology 37:219–22 [Google Scholar]
  115. Sable JE, Houghton BF, Del Carlo P, Coltelli M. 2006. Changing conditions of magma ascent and fragmentation during the Etna 122 BC basaltic Plinian eruption: evidence from clast microtextures. J. Volcanol. Geotherm. Res. 158:333–54 [Google Scholar]
  116. Sable JE, Houghton BF, Wilson CJN, Carey RJ. 2009. Eruption mechanisms during the climax of the Tarawera 1886 basaltic Plinian eruption inferred from microtextural characteristics of the deposits. Spec. Publ. IAVCEI 2:129–54 [Google Scholar]
  117. Santer BD, Bonfils C, Painter JF, Zelinka MD, Mears C. et al. 2014. Volcanic contribution to decadal changes in tropospheric temperature. Nat. Geosci. 7:185–89 [Google Scholar]
  118. Scharff L, Hort M, Gerst A. 2014. The dynamics of the dome at Santiaguito volcano, Guatemala. Geophys. J. Int. 197:926–42 [Google Scholar]
  119. Scheu B, Spieler O, Dingwell DB. 2006. Dynamics of explosive volcanism at Unzen volcano: an experimental contribution. Bull. Volcanol. 69:175–87 [Google Scholar]
  120. Schipper CI, Castro JM, Tuffen H, James MR, How P. 2013. Shallow vent architecture during hybrid explosive-effusive activity at Cordón Caulle (Chile, 2011–12): evidence from direct observations and pyroclast textures. J. Volcanol. Geotherm. Res. 262:25–37 [Google Scholar]
  121. Schlegel JP, Sharma S, Cuenca RM, Hibiki T, Ishii M. 2014. Local flow structure beyond bubbly flow in large diameter channels. Int. J. Heat Fluid Flow 47:42–52 [Google Scholar]
  122. Self S. 2006. The effects and consequences of very large explosive volcanic eruptions. Philos. Trans. R. Soc. A 364:2073–97 [Google Scholar]
  123. Self S, Sparks RSJ. 1978. Characteristics of widespread pyroclastic deposits formed by the interaction of silicic magma and water. Bull. Volcanol. 41:196–212 [Google Scholar]
  124. Sheridan MF, Wohletz KH. 1983. Hydrovolcanism: basic consideration and review. J. Volcanol. Geotherm. Res. 17:1–29 [Google Scholar]
  125. Shikhmurzaev YD. 2000. Coalescence and capillary breakup of liquid volumes. Phys. Fluids 12:2386–96 [Google Scholar]
  126. Smith MI, Besseling R, Cates ME, Bertola V. 2010. Dilatancy in the flow and fracture of stretched colloidal suspensions. Nat. Commun. 1:114 [Google Scholar]
  127. Sparks RSJ. 1978. The dynamics of bubble formation and growth in magmas: a review and analysis. J. Volcanol. Geotherm. Res. 3:1–37 [Google Scholar]
  128. Sparks RSJ, Wilson L. 1976. A model for the formation of ignimbrite by gravitational column collapse. J. Geol. Soc. Lond. 132:441–51 [Google Scholar]
  129. Spencer JR, Nimmo F. 2013. Enceladus: an active ice world in the Saturn system. Annu. Rev. Earth Planet. Sci. 41:693–717 [Google Scholar]
  130. Spieler O, Kennedy B, Kueppers U, Dingwell DB, Scheu B, Taddeucci J. 2004. The fragmentation threshold of pyroclastic rocks. Earth Planet. Sci. Lett. 226:139–48 [Google Scholar]
  131. Toramaru A. 1995. Numerical study of nucleation and growth of bubbles in viscous magma. J. Geophys. Res. 100:B21913–31 [Google Scholar]
  132. Toramaru A. 2006. BND (bubble number density) decompression rate meter for explosive volcanic eruptions. J. Volcanol. Geotherm. Res. 154:303–16 [Google Scholar]
  133. Tuffen H, Dingwell DB, Pinkerton H. 2003. Repeated fracture and healing of silicic magma generate flow banding and earthquakes?. Geology 31:1089–92 [Google Scholar]
  134. Tuffen H, Smith R, Sammonds PR. 2008. Evidence for seismogenic fracture of silicic magma. Nature 453:511–14 [Google Scholar]
  135. Turcotte DL. 1986. Fractals and fragmentation. J. Geophys. Res. 91:B21921–26 [Google Scholar]
  136. Vergniolle S, Jaupart C. 1986. Separated two-phase flow and basaltic eruptions. J. Geophys. Res. 91:12842–60 [Google Scholar]
  137. Villermaux E. 2007. Fragmentation. Annu. Rev. Fluid Mech. 39:419–46 [Google Scholar]
  138. Villermaux E. 2012. The formation of filamentary structures from molten silicates: Pele's hair, angel hair, and blown clinker. C. R. Méc. 340:555–64 [Google Scholar]
  139. Voight B, Sparks RSJ, Miller AD, Stewart RC, Hoblitt RP. et al. 1999. Magma flow instability and cyclic activity at Soufriere Hills volcano, Montserrat, British West Indies. Science 283:1138–42 [Google Scholar]
  140. Walker GP. 1973. Explosive volcanic eruptions—a new classification scheme. Geol. Rundsch. 62:431–46 [Google Scholar]
  141. Webb SL, Dingwell DB. 1990a. Non-Newtonian rheology of igneous melts at high stresses and strain rates: experimental results for rhyolite, andesite, basalt and nephelinite. J. Geophys. Res. 95:B1015695–701 [Google Scholar]
  142. Webb SL, Dingwell DB. 1990b. The onset of non-Newtonian rheology of silicate melts: a fiber elongation study. Phys. Chem. Miner. 17:125–32 [Google Scholar]
  143. White JDL, Houghton BF. 2000. Surtseyan and related phreatomagmatic eruptions. See Houghton et al. 2000a 495–511
  144. Wilson L. 1999. Explosive volcanic eruptions. X. The influence of pyroclast size distributions and released magma gas content on the eruption velocities of pyroclasts and gas in Hawaiian and Plinian eruptions. Geophys. J. Int. 136:609–19 [Google Scholar]
  145. Wilson L, Sparks RSJ, Walker GPL. 1980. Explosive volcanic eruptions. IV. The control of magma properties and conduit geometry on eruption column behaviour. Geophys. J. R. Astron. Soc. 63:117–48 [Google Scholar]
  146. Wilson TM, Stewart C, Sword-Daniels V, Leonard GS, Johnston DM. et al. 2012. Volcanic ash impacts on critical infrastructure. Phys. Chem. Earth 45–46:5–23 [Google Scholar]
  147. Wohletz KH. 1983. Mechanisms of hydrovolcanic pyroclast formation: grain-size, scanning electron microscopy, and experimental studies. J. Volcanol. Geotherm. Res. 17:31–63 [Google Scholar]
  148. Wohletz KH, Sheridan MF, Brown WK. 1989. Particle size distributions and the sequential fragmentation/transport theory applied to volcanic ash. J. Geophys. Res. 94:B1115703–21 [Google Scholar]
  149. Wohletz K, Zimanowski B, Bütter R. 2013. Magma-water interactions. See Fagents et al. 2013 230–57
  150. Woods AW. 2013. Sustained explosive activity: volcanic eruption columns and Hawaiian fountains. See Fagents et al. 2013 153–72
  151. Wright HMN, Cashman KV, Gottesfeld EH, Roberts JJ. 2009. Pore structure of volcanic clasts: measurements of permeability and electrical conductivity. Earth Planet. Sci. Lett. 280:93–104 [Google Scholar]
  152. Wright HMN, Weinberg RF. 2009. Strain localization in vesicular magma: implications for rheology and fragmentation. Geology 37:1023–26 [Google Scholar]
  153. Yew CH, Taylor PA. 1994. A thermodynamics theory of dynamic fragmentation. Int. J. Impact Eng. 15:385–94 [Google Scholar]
  154. Zhang YX. 1998. Mechanical and phase equilibria in inclusion-host systems. Earth Planet. Sci. Lett. 157:209–22 [Google Scholar]
  155. Zhang YX. 1999. A criterion for the fragmentation of bubbly magma based on brittle failure theory. Nature 402:648–50 [Google Scholar]
/content/journals/10.1146/annurev-earth-060614-105206
Loading
/content/journals/10.1146/annurev-earth-060614-105206
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error