1932

Abstract

Collisions between particles suspended in a fluid play an important role in many physical processes. As an example, collisions of microscopic water droplets in clouds are a necessary step in the production of macroscopic raindrops. Collisions of dust grains are also conjectured to be important for planet formation in the gas surrounding young stars and to play a role in the dynamics of sand storms. In these processes, collisions are favored by fast turbulent motions. Here we review recent advances in the understanding of collisional aggregation due to turbulence. We discuss the role of fractal clustering of particles and caustic singularities of their velocities. We also discuss limitations of the Smoluchowski equation for modeling such processes. These advances lead to a semiquantitative understanding on the influence of turbulence on collision rates and point to deficiencies in the current understanding of rainfall and planet formation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031115-011538
2016-03-10
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/7/1/annurev-conmatphys-031115-011538.html?itemId=/content/journals/10.1146/annurev-conmatphys-031115-011538&mimeType=html&fmt=ahah

Literature Cited

  1. Balachander S, Eaton JK. 1.  2010. Annu. Rev. Fluid Mech. 42:111–33
  2. Pruppacher HR, Klett JD. 2.  2005. Microphysics of Clouds and Precipitations Dordrecht: Kluwer
  3. Shaw RA. 3.  2003. Annu. Rev. Fluid Mech. 35:183–227
  4. Goldstein RE. 4.  2015. Annu. Rev. Fluid Mech. 47:343–75
  5. Trenberth KE, Fasullo JT, Kiehl J. 5.  2009. Bull. Am. Meteorol. Soc. 90:311–23
  6. Grabowski WW, Wang LP. 6.  2013. Annu. Rev. Fluid Mech. 45:293–324
  7. Safranov VS. 7.  1969. Evolution of the protoplanetary cloud and formation of earth and planets NASA Tech. Transl. F-677, Moscow, Nauka
  8. Saffman PG, Turner JS. 8.  1956. J. Fluid Mech. 1:16–30
  9. Völk HJ, Jones FC, Morfill GE, Röser S. 9.  1980. Astron. Atrophys. 85:316–25
  10. Taylor GI. 10.  1922. Proc. Lond. Math. Soc. Ser. II 20:196–212
  11. Elghobashi S. 11.  1994. Appl. Sci. Res. 52:309–29
  12. Smoluchowski M. 12.  1917. Z. Phys. Chem. 92:129–68
  13. Krapivsy PL, Redner S, Ben-Naim E. 13.  2010. A Kinetic View of Statistical Physics Cambridge, UK: Cambridge Univ. Press
  14. Wilkinson M, Mehlig B. 14.  2005. Europhys. Lett. 71:186–92
  15. Bodenschatz E, Malinowski SP, Shaw RA, Stratmann F. 15.  2010. Science 327:970–71
  16. Devenish BJ, Bartello P, Bringuier JL, Collins LR, Grabowski WW. 16.  et al. 2012. Q. J. R. Meteorol. Soc. 138:1401–29
  17. Maxey MR, Riley JJ. 17.  1983. Phys. Fluids 26:883–89
  18. Gatignol R. 18.  1983. J. Mech. Theor. Appl. 1:143–60
  19. Elghobashi S, Truesdell GC. 19.  1992. J. Fluid Mech. 242:655–700
  20. Daitche A, Tél T. 20.  2011. Phys. Rev. Lett. 107:244501
  21. Rybczynski W. 21.  1911. Bull. Acad. Sci. Crac. A:40–46
  22. Hadamard JS. 22.  1911. C.R. Acad. Sci. 152:1735–38
  23. Epstein PS. 23.  1924. Phys. Rev. 23:710–33
  24. Zimmermann R, Gasteuil Y, Bourgoin M, Volk R, Pumir A, Pinton JF. 24.  2011. Phys. Rev. Lett. 106:154501
  25. Klein S, Gibert M, Bérut A, Bodenschatz E. 25.  2013. Meas. Sci. Technol. 24:024006
  26. Naso A, Prosperetti A. 26.  2010. New J. Phys. 12:33040
  27. Lucci F, Ferrante A, Elghobashi S. 27.  2010. J. Fluid Mech. 650:5–55
  28. Homann H, Bec J, Grauer R. 28.  2013. J. Fluid Mech. 721:155–79
  29. Boltzmann L. 29.  1995. Lectures on Gas Theory New York: Dover
  30. Sundaram S, Collins LR. 30.  1997. J. Fluid Mech. 335:75–109
  31. Wang LP, Wexler AS, Zhou Y. 31.  2000. J. Fluid Mech. 415:117–53
  32. Mason BJ. 32.  1957. The Physics of Clouds Oxford, UK: Oxford Univ. Press
  33. Landau LD, Lifshitz EM. 33.  1980. Statistical Physics Oxford, UK: Pergamon
  34. Falkovich G, Sreenivasan KR. 34.  2006. Phys. Today 59:443
  35. Kolmogorov AN. 35.  1941. Dokl. Akad. Nauk SSSR. 30:4299–303
  36. Kolmogorov AN. 36.  1941. Dokl. Akad. Nauk SSSR. 32:116–18
  37. Brunk BK, Koch DL. 37.  1998. J. Fluid Mech. 364:81–113
  38. Pumir A, Wilkinson M. 38.  2011. New J. Phys. 13:093030
  39. La Porta A, Voth GA, Crawford AM, Alexander J, Bodenschatz E. 39.  2001. Nature 409:1017–19
  40. Toschi F, Bodenschatz E. 40.  2009. Annu. Rev. Fluid Mech. 41:375–404
  41. Orszag SA, Patterson GS. 41.  1972. Phys. Rev. Lett. 28:76–79
  42. Ishihara T, Gotoh T, Kaneda Y. 42.  2009. Annu. Rev. Fluid Mech. 41:165–80
  43. Hackl JF, Yeung PK, Sawford BL. 43.  2011. Phys. Fluids 23:065103
  44. Yeung PK, Pope SB. 44.  1988. J. Comput. Phys. 79:373–416
  45. Sundaram S, Collins LR. 45.  1996. J. Comput. Phys. 124:337–50
  46. Good G, Ireland P, Bewley G, Bodenschatz E, Collins L, Warhaft Z. 46.  2014. J. Fluid Mech. 759:R3
  47. Maxey MR. 47.  1987. J. Fluid Mech. 174:441–65
  48. Wang LP, Maxey MR. 48.  1993. J. Fluid Mech. 256:27–68
  49. Balkovsky E, Falkovich G, Fouxon A. 49.  2001. Phys. Rev. Lett. 86:2790–3
  50. Falkovich G, Fouxon A, Stepanov MG. 50.  2002. Nature 419:151–54
  51. Falkovich G, Pumir A. 51.  2004. Phys. Fluids 16:L47
  52. Grassberger P, Procaccia I. 52.  1983. Phys. D 9:189–208
  53. Ott E. 53.  2002. Chaos in Dynamical Systems Cambridge, UK: Cambridge Univ. Press
  54. Sommerer JC, Ott E. 54.  1993. Science 259:335–39
  55. Bec J. 55.  2003. Phys. Fluids 15:L81–84
  56. Bec J, Biferale L, Cecini M, Lanotte A, Musacchio S, Toschi F. 56.  2007. Phys. Rev. Lett. 98:084502
  57. Wilkinson M, Mehlig B, Östlund S, Duncan KP. 57.  2007. Phys. Fluids 19:113303
  58. Wilkinson M, Mehlig B, Gustavsson K. 58.  2010. Europhys. Lett. 89:50002
  59. Kostinski AB, Shaw RA. 59.  2001. J. Fluid Mech. 434:389–98
  60. Monchaux R, Bourgoin M, Cartellier A. 60.  2010. Phys. Fluids 22:103304
  61. Crisanti A, Falcioni M, Provenzale A, Tanga P, Vulpiani A. 61.  1992. Phys. Fluids A 4:1806–20
  62. IJzermans RHA, Reeks MW, Meneguz E, Picciotto M, Soldati A. 62.  2009. Phys. Rev. E 80:015302
  63. Ijzermans RHA, Meneguz E, Reeks MW. 63.  2010. J. Fluid Mech. 653:99–136
  64. Gustavsson K, Meneguz E, Reeks M, Mehlig B. 64.  2012. New J. Phys. 14:115017
  65. Saunders PT. 65.  1980. An Introduction to Catastrophe Theory. Cambridge, UK: Cambridge Univ. Press
  66. Wilkinson M, Mehlig B, Bezuglyy V. 66.  2006. Phys. Rev. Lett. 97:048501
  67. Falkovich G, Pumir A. 67.  2007. J. Atmos. Sci. 64:4497–505
  68. Bewley GP, Saw EW, Bodenschatz E. 68.  2013. New J. Phys. 15:083051
  69. Ducasse L, Pumir A. 69.  2009. Phys. Rev. E 80:066312
  70. Abrahamson J. 70.  1975. Chem. Eng. Sci. 30:1371–79
  71. Mehlig B, Uski V, Wilkinson M. 71.  2007. Phys. Fluids 19:098107
  72. Voßkuhle M, Pumir A, Lévêque E, Wilkinson M. 72.  2014. J. Fluid Mech. 749:841–52
  73. Gustavsson K, Mehlig B. 73.  2011. Phys. Rev. E 84:045304
  74. Zaichik LI, Simonin O, Alipchenkov VM. 74.  2003. Phys. Fluids 15:2995
  75. Zaichik LI, Simonin O, Alipchenkov VM. 75.  2010. Intl. J. Heat Mass Transf. 53:1613–20
  76. Gustavsson K, Mehlig B, Wilkinson M, Uski V. 76.  2008. Phys. Rev. Lett. 101:74503
  77. Pan L, Padoan P. 77.  2013. Astrophys. J. 776:12
  78. Voßkuhle M, Leveque E, Wilkinson M, Pumir A. 78.  2013. Phys. Rev. E 88:063008
  79. Voßkuhle M, Pumir A, Lévêque E, Wilkinson M. 79.  2015. J. Turbul. 16:15–25
  80. Bec J, Biferale L, Cencini M, Lanotte AS, Toschi F. 80.  2010. J. Fluid Mech. 646:527–36
  81. Rosa B, Parishani H, Ayala O, Grabowski WW, Wang LP. 81.  2013. New J. Phys. 15:045032
  82. Gustavsson K, Mehlig B. 82.  2013. J. Turbul. 15:34–69
  83. Chun J, Koch DL. 83.  2005. Phys. Fluids 17:027102
  84. Derevyanko S, Falkovich G, Tuitsyn S. 84.  2008. New J. Phys. 10:075019
  85. Aldous DJ. 85.  1999. Bernoulli 5:3–48
  86. van Dongen PGJ. 86.  1987. J. Phys. A: Math. Gen. 20:71889
  87. Carr J, da Costa FP. 87.  1992. Z. Angew. Math. Phys. 43:974–83
  88. Ball RC, Connaughton C, Stein THM, Zaboronski O. 88.  2011. Phys. Rev. E 84:011111
  89. Villermaux E. 89.  2009. Nat. Phys. 5:697–702
  90. Rogers RR, Yau MK. 90.  1982. A Short Course in Cloud Physics Burlington, MA: Butterworth-Heinemann298
  91. Kostinski AB, Shaw RA. 91.  2005. Bull. Am. Meterol. Soc. 86:235–44
  92. Touchette H. 92.  2009. Phys. Rep. 478:1–69
  93. Wilkinson M. 93.  2016. Phys. Rev. Lett 116:018501
  94. Wilkinson M. 94.  2014. Europhys. Lett. 108:49001
  95. Armitage PJ. 95.  2010. Astrophysics of Planet Formation Cambridge, UK: Cambridge Univ. Press
  96. Shakura NI, Sunyaev RA. 96.  1973. Astron. Astrophys. 24:337
  97. Goldreich P, Ward WR. 97.  1973. Astrophys. J. 183:1051–62
  98. Wilkinson M, Mehlig B, Uski V. 98.  2008. Astrophys. J. Suppl. 176:484–96
  99. Blum J, Wurm G. 99.  2008. Annu. Rev. Astron. Astrophys. 46:21–56
  100. Weidenschilling SJ. 100.  1977. Mon. Not. R. Astron. Soc. 180:57–70
  101. Takeuchi T, Lin DC. 101.  2002. Astrophys. J. 581:1344–55
  102. Youdin AN, Goodman J. 102.  2005. Astrophys. J. 620:459–69
  103. Johansen A, Youdin AN, Lithwick Y. 103.  2012. Astron. Astrophys. 537:A125
  104. Winn JN, Fabrycky DC. 104.  2015. Annu. Rev. Astron. Astrophys. 53:409–47
  105. Zakamska NL, Tremaine S. 105.  2004. Astron. J. 128:869–77
  106. Ford EB, Rasio FA, Yu K. 106.  2003. In Scientific Frontiers in Research on Extrasolar Planets D Deming, S Seager ASP Conf. Ser. 294181 San Francisco: ASP [Google Scholar]
  107. Ribas I, Miralda-Escudé J. 107.  2007. Astron. Astrophys. 464:779–85
  108. Wilkinson M, Mehlig B. 108.  2012. Let's Face Chaos Through Nonlinear Dynamics: Proc. 8th Int. Summer Sch./Conf., ed. M Robnik, VG Romanovski AIP Conf. Proc. 1468:375–88
  109. Siebert H, Shaw RA, Ditas J, Schmeissner T, Malinowski SP. 109.  et al. 2015. Atmos. Meas. Tech. Discuss. 8:569–97
  110. Wilkinson M, Mehlig B. 110.  2003. Phys. Rev. E 68:040101(R)
/content/journals/10.1146/annurev-conmatphys-031115-011538
Loading
/content/journals/10.1146/annurev-conmatphys-031115-011538
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error