1932

Abstract

In the adult mammalian body, self-renewal of tissue stem cells is regulated by extracellular niche environments in response to the demands of tissue organization. Intestinal stem cells expressing Lgr5 constantly self-renew in their specific niche at the crypt bottom to maintain rapid turnover of the epithelium. Niche-regulated stem cell self-renewal is perturbed in several mouse genetic models and during human tumorigenesis, suggesting roles for EGF, Wnt, BMP/TGF-β, and Notch signaling. In vitro niche reconstitution capitalizing on this knowledge has enabled the growth of single intestinal stem cells into mini-gut epithelial organoids comprising Lgr5+ stem cells and all types of differentiated lineages. The mini-gut organoid culture platform is applicable to various types of digestive tissue epithelium from multiple species. The mechanism of self-renewal in organoids provides novel insights for organogenesis, regenerative medicine, and tumorigenesis of the digestive system.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100814-125218
2015-11-13
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/31/1/annurev-cellbio-100814-125218.html?itemId=/content/journals/10.1146/annurev-cellbio-100814-125218&mimeType=html&fmt=ahah

Literature Cited

  1. Altmann GG. 1983. Morphological observations on mucus-secreting nongoblet cells in the deep crypts of the rat ascending colon. Am. J. Anat. 167:95–117 [Google Scholar]
  2. Barker N. 2014. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat. Rev. Mol. Cell Biol. 15:19–33 [Google Scholar]
  3. Barker N, Huch M, Kujala P, van de Wetering M, Snippert HJ. et al. 2010. Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6:25–36 [Google Scholar]
  4. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M. et al. 2007. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–7 [Google Scholar]
  5. Bartfeld S, Bayram T, van de Wetering M, Huch M, Begthel H. et al. 2015. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology 148:126–36 [Google Scholar]
  6. Bjerknes M, Cheng H. 1999. Clonal analysis of mouse intestinal epithelial progenitors. Gastroenterology 116:7–14 [Google Scholar]
  7. Bjerknes M, Cheng H. 2006. Intestinal epithelial stem cells and progenitors. Methods Enzymol. 419:337–83 [Google Scholar]
  8. Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E. 2004. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118:635–48 [Google Scholar]
  9. Boj SF, Hwang CI, Baker LA, Chio II, Engle DD. et al. 2015. Organoid models of human and mouse ductal pancreatic cancer. Cell 160:324–38 [Google Scholar]
  10. Buczacki SJ, Zecchini HI, Nicholson AM, Russell R, Vermeulen L. et al. 2013. Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature 495:65–69 [Google Scholar]
  11. Chang WW, Leblond CP. 1971. Renewal of the epithelium in the descending colon of the mouse. I. Presence of three cell populations: vacuolated-columnar, mucous and argentaffin. Am. J. Anat. 131:73–99 [Google Scholar]
  12. Chen CL, Yu X, James IO, Zhang HY, Yang J. et al. 2012. Heparin-binding EGF-like growth factor protects intestinal stem cells from injury in a rat model of necrotizing enterocolitis. Lab. Investig. 92:331–44 [Google Scholar]
  13. Cheng H, Leblond CP. 1974. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian theory of the origin of the four epithelial cell types. Am. J. Anat. 141:537–61 [Google Scholar]
  14. Chua CW, Shibata M, Lei M, Toivanen R, Barlow LJ. et al. 2014. Single luminal epithelial progenitors can generate prostate organoids in culture. Nat. Cell Biol. 16:951–61 [Google Scholar]
  15. Cutting GR. 2015. Cystic fibrosis genetics: from molecular understanding to clinical application. Nat. Rev. Genet. 16:45–56 [Google Scholar]
  16. Davies EJ, Marsh Durban V, Meniel V, Williams GT, Clarke AR. 2014. PTEN loss and KRAS activation leads to the formation of serrated adenomas and metastatic carcinoma in the mouse intestine. J. Pathol. 233:27–38 [Google Scholar]
  17. Davis H, Irshad S, Bansal M, Rafferty H, Boitsova T. et al. 2015. Aberrant epithelial GREM1 expression initiates colonic tumorigenesis from cells outside the stem cell niche. Nat. Med. 21:62–70 [Google Scholar]
  18. de Jong PR, Takahashi N, Harris AR, Lee J, Bertin S. et al. 2014. Ion channel TRPV1-dependent activation of PTP1B suppresses EGFR-associated intestinal tumorigenesis. J. Clin. Investig. 124:3793–806 [Google Scholar]
  19. de Lau W, Barker N, Low TY, Koo BK, Li VS. et al. 2011. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 476:293–97 [Google Scholar]
  20. Dekkers JF, Wiegerinck CL, de Jonge HR, Bronsveld I, Janssens HM. et al. 2013. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat. Med. 19:939–45 [Google Scholar]
  21. Durand A, Donahue B, Peignon G, Letourneur F, Cagnard N. et al. 2012. Functional intestinal stem cells after Paneth cell ablation induced by the loss of transcription factor Math1 (Atoh1). PNAS 109:8965–70 [Google Scholar]
  22. Evans GS, Flint N, Somers AS, Eyden B, Potten CS. 1992. The development of a method for the preparation of rat intestinal epithelial cell primary cultures. J. Cell Sci. 101:219–31 [Google Scholar]
  23. Farin HF, van Es JH, Clevers H. 2012. Redundant sources of Wnt regulate intestinal stem cells and promote formation of Paneth cells. Gastroenterology 143:61518–29 [Google Scholar]
  24. Feng R, Aihara E, Kenny S, Yang L, Li J. et al. 2014. Indian hedgehog mediates gastrin-induced proliferation in stomach of adult mice. Gastroenterology 147:3655–66 [Google Scholar]
  25. Feng Y, Bommer GT, Zhao J, Green M, Sands E. et al. 2011. Mutant KRAS promotes hyperplasia and alters differentiation in the colon epithelium but does not expand the presumptive stem cell pool. Gastroenterology 141:1003–13 [Google Scholar]
  26. Fordham RP, Yui S, Hannan NR, Soendergaard C, Madgwick A. et al. 2013. Transplantation of expanded fetal intestinal progenitors contributes to colon regeneration after injury. Cell Stem Cell 13:734–44 [Google Scholar]
  27. Froslie KF, Jahnsen J, Moum BA, Vatn MH. (IBSEN Group) 2007. Mucosal healing in inflammatory bowel disease: results from a Norwegian population-based cohort. Gastroenterology 133:412–22 [Google Scholar]
  28. Fukuda M, Mizutani T, Mochizuki W, Matsumoto T, Nozaki K. et al. 2014. Small intestinal stem cell identity is maintained with functional Paneth cells in heterotopically grafted epithelium onto the colon. Genes Dev. 28:1752–57 [Google Scholar]
  29. Gao D, Vela I, Sboner A, Iaquinta PJ, Karthaus WR. et al. 2014. Organoid cultures derived from patients with advanced prostate cancer. Cell 159:176–87 [Google Scholar]
  30. Halac U, Lacaille F, Joly F, Hugot JP, Talbotec C. et al. 2011. Microvillous inclusion disease: how to improve the prognosis of a severe congenital enterocyte disorder. J. Pediatr. Gastroenterol. Nutr. 52:460–65 [Google Scholar]
  31. Hao HX, Xie Y, Zhang Y, Charlat O, Oster E. et al. 2012. ZNRF3 promotes Wnt receptor turnover in an R-spondin–sensitive manner. Nature 485:195–200 [Google Scholar]
  32. Haramis AP, Begthel H, van den Born M, van Es J, Jonkheer S. et al. 2004. De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science 303:1684–86 [Google Scholar]
  33. Hattori Y, Odagiri H, Nakatani H, Miyagawa K, Naito K. et al. 1990. K-sam, an amplified gene in stomach cancer, is a member of the heparin-binding growth factor receptor genes. PNAS 87:5983–87 [Google Scholar]
  34. He XC, Yin T, Grindley JC, Tian Q, Sato T. et al. 2007. PTEN-deficient intestinal stem cells initiate intestinal polyposis. Nat. Genet. 39:189–98 [Google Scholar]
  35. He XC, Zhang J, Tong WG, Tawfik O, Ross J. et al. 2004. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-β-catenin signaling. Nat. Genet. 36:1117–21 [Google Scholar]
  36. Huch M, Boj SF, Clevers H. 2013a. Lgr5+ liver stem cells, hepatic organoids and regenerative medicine. Regen. Med. 8:385–87 [Google Scholar]
  37. Huch M, Bonfanti P, Boj SF, Sato T, Loomans CJ. et al. 2013b. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J. 32:2708–21 [Google Scholar]
  38. Huch M, Dorrell C, Boj SF, van Es JH, Li VS. et al. 2013c. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494:247–50 [Google Scholar]
  39. Huch M, Gehart H, van Boxtel R, Hamer K, Blokzijl F. et al. 2015. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160:299–312 [Google Scholar]
  40. Itzkovitz S, Lyubimova A, Blat IC, Maynard M, van Es J. et al. 2012. Single-molecule transcript counting of stem-cell markers in the mouse intestine. Nat. Cell Biol. 14:106–14 [Google Scholar]
  41. Jensen J, Pedersen EE, Galante P, Hald J, Heller RS. et al. 2000. Control of endodermal endocrine development by Hes-1. Nat. Genet. 24:36–44 [Google Scholar]
  42. Jung P, Sato T, Merlos-Suarez A, Barriga FM, Iglesias M. et al. 2011. Isolation and in vitro expansion of human colonic stem cells. Nat. Med. 17:1225–27 [Google Scholar]
  43. Kabiri Z, Greicius G, Madan B, Biechele S, Zhong Z. et al. 2014. Stroma provides an intestinal stem cell niche in the absence of epithelial Wnts. Development 141:2206–15 [Google Scholar]
  44. Karthaus WR, Iaquinta PJ, Drost J, Gracanin A, van Boxtel R. et al. 2014. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell 159:163–75 [Google Scholar]
  45. Kim KA, Kakitani M, Zhao J, Oshima T, Tang T. et al. 2005. Mitogenic influence of human R-spondin1 on the intestinal epithelium. Science 309:1256–59 [Google Scholar]
  46. Kim TH, Li F, Ferreiro-Neira I, Ho LL, Luyten A. et al. 2014. Broadly permissive intestinal chromatin underlies lateral inhibition and cell plasticity. Nature 506:511–15 [Google Scholar]
  47. Kleinman HK, McGarvey ML, Hassell JR, Star VL, Cannon FB. et al. 1986. Basement membrane complexes with biological activity. Biochemistry 25:312–18 [Google Scholar]
  48. Koo BK, Spit M, Jordens I, Low TY, Stange DE. et al. 2012a. Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature 488:665–69 [Google Scholar]
  49. Koo BK, Stange DE, Sato T, Karthaus W, Farin HF. et al. 2012b. Controlled gene expression in primary Lgr5 organoid cultures. Nat. Methods 9:81–83 [Google Scholar]
  50. Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R. et al. 1997. Constitutive transcriptional activation by a β-catenin-Tcf complex in APC−/− colon carcinoma. Science 275:1784–87 [Google Scholar]
  51. Liu J, Walker NM, Cook MT, Ootani A, Clarke LL. 2012. Functional Cftr in crypt epithelium of organotypic enteroid cultures from murine small intestine. Am. J. Physiol. Cell Physiol. 302:C1492–503 [Google Scholar]
  52. Lund PK, Moats-Staats BM, Hynes MA, Simmons JG, Jansen M. et al. 1986. Somatomedin-C/insulin-like growth factor-I and insulin-like growth factor-II mRNAs in rat fetal and adult tissues. J. Biol. Chem. 261:14539–44 [Google Scholar]
  53. Matano M, Date S, Shimokawa M, Takano A, Fujii M. et al. 2015. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat. Med. 21:256–62 [Google Scholar]
  54. McCracken KW, Cata EM, Crawford CM, Sinagoga KL, Schumacher M. et al. 2014. Modelling human development and disease in pluripotent stem-cell–derived gastric organoids. Nature 516:400–4 [Google Scholar]
  55. Middendorp S, Schneeberger K, Wiegerinck CL, Mokry M, Akkerman RD. et al. 2014. Adult stem cells in the small intestine are intrinsically programmed with their location-specific function. Stem Cells 32:1083–91 [Google Scholar]
  56. Milano J, McKay J, Dagenais C, Foster-Brown L, Pognan F. et al. 2004. Modulation of Notch processing by γ-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicol. Sci. 82:341–58 [Google Scholar]
  57. Montgomery RK, Carlone DL, Richmond CA, Farilla L, Kranendonk ME. et al. 2011. Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells. PNAS 108:179–84 [Google Scholar]
  58. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H. et al. 1997. Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science 275:1787–90 [Google Scholar]
  59. Munoz J, Stange DE, Schepers AG, van de Wetering M, Koo BK. et al. 2012. The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent ‘+4’ cell markers. EMBO J. 31:3079–91 [Google Scholar]
  60. Mustata RC, Vasile G, Fernandez-Vallone V, Strollo S, Lefort A. et al. 2013. Identification of Lgr5-independent spheroid-generating progenitors of the mouse fetal intestinal epithelium. Cell Rep. 5:421–32 [Google Scholar]
  61. Ootani A, Li X, Sangiorgi E, Ho QT, Ueno H. et al. 2009. Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat. Med. 15:701–6 [Google Scholar]
  62. Pellegrinet L, Rodilla V, Liu Z, Chen S, Koch U. et al. 2011. Dll1- and Dll4-mediated Notch signaling are required for homeostasis of intestinal stem cells. Gastroenterology 140:1230–40 [Google Scholar]
  63. Perreault N, Jean-Francois B. 1996. Use of the dissociating enzyme thermolysin to generate viable human normal intestinal epithelial cell cultures. Exp. Cell Res. 224:354–64 [Google Scholar]
  64. Potten CS, Hume WJ, Reid P, Cairns J. 1978. The segregation of DNA in epithelial stem cells. Cell 15:899–906 [Google Scholar]
  65. Powell AE, Wang Y, Li Y, Poulin EJ, Means AL. et al. 2012. The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell 149:146–58 [Google Scholar]
  66. Quaroni A, Wands J, Trelstad RL, Isselbacher KJ. 1979. Epithelioid cell cultures from rat small intestine. Characterization by morphologic and immunologic criteria. J. Cell Biol. 80:248–65 [Google Scholar]
  67. Rad R, Cadinanos J, Rad L, Varela I, Strong A. et al. 2013. A genetic progression model of BrafV600E-induced intestinal tumorigenesis reveals targets for therapeutic intervention. Cancer Cell 24:15–29 [Google Scholar]
  68. Reynolds A, Wharton N, Parris A, Mitchell E, Sobolewski A. et al. 2014. Canonical Wnt signals combined with suppressed TGFβ/BMP pathways promote renewal of the native human colonic epithelium. Gut 63:610–21 [Google Scholar]
  69. Rothenberg ME, Nusse Y, Kalisky T, Lee JJ, Dalerba P. et al. 2012. Identification of a cKit+ colonic crypt base secretory cell that supports Lgr5+ stem cells in mice. Gastroenterology 142:1195–205 [Google Scholar]
  70. Sangiorgi E, Capecchi MR. 2008. Bmi1 is expressed in vivo in intestinal stem cells. Nat. Genet. 40:915–20 [Google Scholar]
  71. Sato T, Clevers H. 2013. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 340:1190–94 [Google Scholar]
  72. Sato T, Stange DE, Ferrante M, Vries RG, van Es JH. et al. 2011a. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology 141:1762–72 [Google Scholar]
  73. Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG. et al. 2011b. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469:415–18 [Google Scholar]
  74. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N. et al. 2009. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–65 [Google Scholar]
  75. Schlaermann P, Toelle B, Berger H, Schmidt SC, Glanemann M. et al. 2014. A novel human gastric primary cell culture system for modelling Helicobacter pylori infection in vitro. Gut 2014:307949 [Google Scholar]
  76. Schumacher MA, Aihara E, Feng R, Engevik A, Shroyer NF. et al. 2015. The use of murine-derived fundic organoids in studies of gastric physiology. J. Physiol. 593:1809–27 [Google Scholar]
  77. Schwank G, Andersson-Rolf A, Koo BK, Sasaki N, Clevers H. 2013a. Generation of BAC transgenic epithelial organoids. PLOS ONE 8:e76871 [Google Scholar]
  78. Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I. et al. 2013b. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13:653–58 [Google Scholar]
  79. Schwitalla S, Fingerle AA, Cammareri P, Nebelsiek T, Goktuna SI. et al. 2013. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell–like properties. Cell 152:25–38 [Google Scholar]
  80. Shimokawa M, Sato T. 2015. Back to 2D culture for ground state of intestinal stem cells. Cell Stem Cell 17:5–7 [Google Scholar]
  81. Spence JR, Mayhew CN, Rankin SA, Kuhar MF, Vallance JE. et al. 2011. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470:105–9 [Google Scholar]
  82. Stange DE, Koo BK, Huch M, Sibbel G, Basak O. et al. 2013. Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell 155:357–68 [Google Scholar]
  83. Steinhauser ML, Bailey AP, Senyo SE, Guillermier C, Perlstein TS. et al. 2012. Multi-isotope imaging mass spectrometry quantifies stem cell division and metabolism. Nature 481:516–19 [Google Scholar]
  84. Takeda N, Jain R, Leboeuf MR, Wang Q, Lu MM, Epstein JA. 2011. Interconversion between intestinal stem cell populations in distinct niches. Science 334:1420–24 [Google Scholar]
  85. Tanaka T, Komai Y, Tokuyama Y, Yanai H, Ohe S. et al. 2013. Identification of stem cells that maintain and regenerate lingual keratinized epithelial cells. Nat. Cell Biol. 15:511–18 [Google Scholar]
  86. Tsai YH, VanDussen KL, Sawey ET, Wade AW, Kasper C. et al. 2014. ADAM10 regulates Notch function in intestinal stem cells of mice. Gastroenterology 147:822–34 [Google Scholar]
  87. Ueo T, Imayoshi I, Kobayashi T, Ohtsuka T, Seno H. et al. 2012. The role of Hes genes in intestinal development, homeostasis and tumor formation. Development 139:1071–82 [Google Scholar]
  88. van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I. et al. 2002. The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111:241–50 [Google Scholar]
  89. van Es JH, Clevers H. 2005. Notch and Wnt inhibitors as potential new drugs for intestinal neoplastic disease. Trends Mol. Med. 11:496–502 [Google Scholar]
  90. van Es JH, de Geest N, van de Born M, Clevers H, Hassan BA. 2010. Intestinal stem cells lacking the Math1 tumour suppressor are refractory to Notch inhibitors. Nat. Commun. 1:18 [Google Scholar]
  91. van Es JH, Sato T, van de Wetering M, Lyubimova A, Nee AN. et al. 2012. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat. Cell Biol. 14:1099–104 [Google Scholar]
  92. van Es JH, van Gijn ME, Riccio O, van den Born M, Vooijs M. et al. 2005. Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435:959–63 [Google Scholar]
  93. Wang X, Yamamoto Y, Wilson LH, Zhang T, Howitt BE. et al. 2015. Cloning and variation of ground state intestinal stem cells. Nature 522:173–78 [Google Scholar]
  94. Watson CL, Mahe MM, Munera J, Howell JC, Sundaram N. et al. 2014. An in vivo model of human small intestine using pluripotent stem cells. Nat. Med. 20:1310–14 [Google Scholar]
  95. Wiegerinck CL, Janecke AR, Schneeberger K, Vogel GF, van Haaften-Visser DY. et al. 2014. Loss of syntaxin 3 causes variant microvillus inclusion disease. Gastroenterology 147:65–68 [Google Scholar]
  96. Winton DJ, Blount MA, Ponder BA. 1988. A clonal marker induced by mutation in mouse intestinal epithelium. Nature 333:463–66 [Google Scholar]
  97. Wong VW, Stange DE, Page ME, Buczacki S, Wabik A. et al. 2012. Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling. Nat. Cell Biol. 14:401–8 [Google Scholar]
  98. Yang Q, Bermingham NA, Finegold MJ, Zoghbi HY. 2001. Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science 294:2155–58 [Google Scholar]
  99. Yilmaz OH, Katajisto P, Lamming DW, Gultekin Y, Bauer-Rowe KE. et al. 2012. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature 486:490–95 [Google Scholar]
  100. Yin X, Farin HF, van Es JH, Clevers H, Langer R, Karp JM. 2014. Niche-independent high-purity cultures of Lgr5+ intestinal stem cells and their progeny. Nat. Methods 11:106–12 [Google Scholar]
  101. Yui S, Nakamura T, Sato T, Nemoto Y, Mizutani T. et al. 2012. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nat. Med. 18:618–23 [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100814-125218
Loading
/content/journals/10.1146/annurev-cellbio-100814-125218
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error