1932

Abstract

Archaeologists generally agree that high-power computer technology constitutes the most efficient venue for addressing many issues in archaeological research. Digital techniques have become indispensable components of archaeological surveys, fieldwork, lab work, and communication between researchers. One of the greatest advantages of the digital approach is its ability to examine large assemblages of items using advanced statistical methods. Digital documentation has reached the point of no return in archaeological research, and reverting to traditional methods is highly improbable. However, digital data may also contain additional information that has yet to be extracted by computer analysis. In this arena, new computer algorithms can be triggered by research questions that cannot be addressed without digital models.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anthro-102215-095946
2016-10-21
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/anthro/45/1/annurev-anthro-102215-095946.html?itemId=/content/journals/10.1146/annurev-anthro-102215-095946&mimeType=html&fmt=ahah

Literature Cited

  1. Abel RL, Parfitt S, Ashton N. et al. 2011. Digital preservation and dissemination of ancient lithic technology with modern micro-CT. Comput. Graph. 35:878–84 [Google Scholar]
  2. Al-kheder S, Al-shawabkeh Y, Haala N. 2009. Developing a documentation system for desert palaces in Jordan using 3D laser scanning and digital photogrammetry. J. Archaeol. Sci. 36:537–46 [Google Scholar]
  3. Archer W, Braun DR. 2010. Variability in bifacial technology at Elandsfontein, Western Cape, South Africa: a geometric morphometric approach. J. Archaeol. Sci. 37:201–9 [Google Scholar]
  4. Beale GA, Reilly PA. 2014. Virtual archaeology in a material world: new technologies enabling novel perspectives Presented at CAA 2014: 21st Century Archaeol., Apr. 25, Paris
  5. Bewley RH, Crutchley SP, Shell CA. 2005. New light on an ancient landscape: LiDAR survey in the Stonehenge World Heritage Site. Antiquity 79:636–47 [Google Scholar]
  6. Bourdier C, Fuentes O, Pinçon G. 2015. Contribution of 3D technologies to the analysis of form in late palaeolithic rock carvings: the case of the Roc-aux-Sorciers rock-shelter (Angles-sur-l'Anglin, France). Digit. Appl. Archaeol. Cult. Herit. 2:140–54 [Google Scholar]
  7. Bretzke K, Conard NJ. 2012. Evaluating morphological variability in lithic assemblages using 3D models of stone artifacts. J. Archaeol. Sci. 39:3741–49 [Google Scholar]
  8. Buchanan B, Collard M. 2010. A geometric morphometrics-based assessment of blade shape differences among Paleoindian projectile point types from western North America. J. Archaeol. Sci. 37:350–59 [Google Scholar]
  9. Cardillo M. 2010. Some applications of geometric morphometrics to archaeology. Morphometrics to Nonmorphometricians AMT Elewa 325–41 Heidelberg, Ger: Springer [Google Scholar]
  10. Charlin J, González-José R. 2012. Size and shape variation in Late Holocene projectile points of southern Patagonia: a geometric morphometric study. Am. Antiq. 77:221–42 [Google Scholar]
  11. Chase AF, Chase DZ, Weishampel JF. 2013. The use of LiDAR at the Maya site of Caracol, Belize. Mapping Archaeological Landscapes from Space187–97 New York: Springer [Google Scholar]
  12. Chase AF, Chase DZ, Weishampel JF, Drake JB, Shrestha RL. et al. 2011. Airborne LiDAR, archaeology, and the ancient Maya landscape at Caracol, Belize. J. Archaeol. Sci. 38:387–98 [Google Scholar]
  13. Chenhall RG. 1968. The impact of computers on archaeological theory: an appraisal and projection. Comput. Humanit. 3:115–24 [Google Scholar]
  14. Clarkson C. 2013. Measuring core reduction using 3D flake scar density: a test case of changing core reduction at Klasies River Mouth, South Africa. J. Archaeol. Sci. 40:4348–57 [Google Scholar]
  15. Clarkson C, Hiscock P. 2011. Estimating original flake mass from 3D scans of platform area. J. Archaeol. Sci. 38:1062–68 [Google Scholar]
  16. Clarkson C, Vinicius L, Lahr MM. 2006. Quantifying flake scar patterning on cores using 3D recording techniques. J. Archaeol. Sci. 33:132–42 [Google Scholar]
  17. Clogg P, Díaz-Andreu M, Larkman B. 2000. Digital image processing and the recording of rock art. J. Archaeol. Sci. 27:837–43 [Google Scholar]
  18. Corns A, Shaw R. 2009. High resolution 3-dimensional documentation of archaeological monuments & landscapes using airborne LiDAR. J. Cult. Heritage 10:Suppl. 1e72–77 [Google Scholar]
  19. Costa AG. 2010. A geometric morphometric assessment of plan shape in bone and stone Acheulean bifaces from the Middle Pleistocene site of Castel di Guido, Latium, Italy. New Perspectives on Old Stones S Lycett, P Chauhan 23–41 New York: Springer [Google Scholar]
  20. De Reu J, De Smedt P, Herremans D. et al. 2014. On introducing an image-based 3D reconstruction method in archaeological excavation practice. J. Archaeol. Sci. 41:251–62 [Google Scholar]
  21. Díaz-Andreu M, Brooke C, Rainsbury M, Rosser N. 2006. The spiral that vanished: the application of non-contact recording techniques to an elusive rock art motif at Castlerigg stone circle in Cumbria. J. Archaeol. Sci. 33:1580–87 [Google Scholar]
  22. Diaz-Guardamino M, Wheatley D. 2013. Rock art and digital technologies: the application of reflectance transformation imaging (RTI) and 3D laser scanning to the study of Late Bronze Age Iberian stelae. J. Andal. Prehistory 4:187–203 [Google Scholar]
  23. Domingo I, Villaverde V, López-Montalvo E, Lerma JL, Cabrelles M. 2013. Latest developments in rock art recording: towards an integral documentation of Levantine rock art sites combining 2D and 3D recording techniques. J. Archaeol. Sci. 40:1879–89 [Google Scholar]
  24. Evans T, Daly P. 2006. Digital Archaeology: Bridging Method and Theory New York: Routledge
  25. Filippas D, Georgopoulos A. 2014. A novel algorithm for detecting conjugate archaeological fragments. Int. J. Herit. Digit. Era 3:237–54 [Google Scholar]
  26. Forte M. 2014. 3D Archaeology: new perspectives and challenges—the example of Çatalhöyük. J. East. Mediterr. Archaeol. Herit. Stud. 2:1–29 [Google Scholar]
  27. Frischer B, Dakouri-Hild A. 2008. Beyond Illustration: 2D and 3D Digital Technologies as Tools for Discovery in Archaeology Oxford, UK: Br. Archaeol. Rep. Int. Ser.
  28. Frischer B, Niccolucci F, Ryan NS, Barceló JA. 2002. From CVR to CVRO: the past, present, and future of cultural virtual reality. Virtual Archaeology: Proc. VAST Conf. F Niccolucci 7–18 BAR Int. Ser. Oxford, UK: Archaeopress [Google Scholar]
  29. García Puchol O, McClure SB, Blasco Senabre J, Cotino Villa F, Porcelli V. 2013. Increasing contextual information by merging existing archaeological data with state of the art laser scanning in the prehistoric funerary deposit of Pastora Cave, Eastern Spain. J. Archaeol. Sci. 40:1593–601 [Google Scholar]
  30. Gay E, Cooper D, Kimia B, Taubin G, Cabrini D. et al. 2010. REVEAL intermediate report Presented at Comp. Vis. Pattern Recognit. (CVPR) Worksh., IEEE Comp. Soc. Conf., June 13–18, San Francisco
  31. Gilboa A, Tal A, Shimshoni I, Kolomenkin M. 2013. Computer-based, automatic recording and illustration of complex archaeological artifacts. J. Archaeol. Sci. 40:1329–39 [Google Scholar]
  32. Goren-Inbar N, Feibel CS, Verosub KL, Melamed Y, Kislev ME. et al. 2000. Pleistocene milestones on the out-of-Africa corridor at Gesher Benot Ya'aqov, Israel. Science 289:944–47 [Google Scholar]
  33. Grosman L, Goldsmith Y, Smilansky U. 2011a. Morphological analysis of Nahal Zihor handaxes: a chronological perspective. PaleoAnthropology 2011:203–15 [Google Scholar]
  34. Grosman L, Karasik A, Harush O, Smilansky U. 2014a. Archaeology in three dimensions—computer-based methods in archaeological research. J. East. Mediterr. Archaeol. Heritage Stud. 2:48–64 [Google Scholar]
  35. Grosman L, Ovadia A, Bogdanovsky A. 2014b. Neolithic masks in a digital world. See Hershman 2014 54–59
  36. Grosman L, Sharon G, Goldman-Neuman T, Smikt O, Smilansky U. 2011b. Studying post depositional damage on Acheulian bifaces using 3-D scanning. J. Hum. Evol. 60:398–406 [Google Scholar]
  37. Grosman L, Smikt O, Smilansky U. 2008. On the application of 3-D scanning technology for the documentation and typology of lithic artifacts. J. Archaeol. Sci. 35:3101–10 [Google Scholar]
  38. Haidle MN, Bolus M, Bruch AA, Hertler C, Kandel AW, Märker M. 2010. The role of culture in early expansions of humans—a new research center. Quat. Int. 223–224:429–30 [Google Scholar]
  39. Hershman D. 2014. Face to Face Jerusalem: Isr. Mus.
  40. Herzlinger G. 2014. A Method of Geometric Morphometric Shape Analysis and Its Application for the Identification of Individual Knappers Jerusalem: Hebrew Univ.
  41. Hey T, Tansley S, Tolle K. 2009. Jim Gray on eScience: a transformed scientific method. The Fourth Paradigm: Data Intensive Scientific Discovery T Hey, S Tansley, K Tolle xvii–xxx Redmond, WA: Microsoft Res. [Google Scholar]
  42. Hill AC, Rowan Y, Kersel MM. 2014. Mapping with aerial photographs: recording the past, the present, and the invisible at Marj Rabba, Israel. Near East. Archaeol. 3:182–86 [Google Scholar]
  43. Jungblut D, Karl S, Mara H, Krömker S, Wittum G. 2013. Automated GPU-based surface morphology reconstruction of volume data for archaeology. Scientific Computing and Cultural Heritage HG Bock, W Jäger, MJ Winckler 41–49 Berlin/Heidelberg: Springer [Google Scholar]
  44. Kampel M, Mara H, Sablatnig R. 2005. Robust 3D reconstruction of archaeological pottery based on concentric circular rills Presented at Int. Worksh. Image Anal. Multimed. Interact. Serv. (WIAMIS'05), 6th, April, Montreux, Switz.
  45. Kandel AW, Bolus M, Bretzke K, Bruch AA, Haidle MN. et al. 2016. Increasing behavioral flexibility? An integrative macro-scale approach to understanding the Middle Stone Age of Southern Africa. J. Archaeol. Method Theory 23623–68
  46. Karasik A, Greenhut Z, Uziel J, Szanton N, Grosman L. et al. 2014. Documentation and analyses on the national scale at the Israel Antiquities Authority: the story of one (broken) sherd. Near East. Archaeol. 77:209–13 [Google Scholar]
  47. Karasik A, Smilansky U. 2008. 3D scanning technology as a standard archaeological tool for pottery analysis: practice and theory. J. Archaeol. Sci. 35:1148–68 [Google Scholar]
  48. Karasik A, Smilansky U. 2011. Computerized morphological classification of ceramics. J. Archaeol. Sci. 38:2644–57 [Google Scholar]
  49. Kintigh KW, Altschul JH, Beaudry MC, Drennan RD, Kinzig AP. et al. 2014. Grand challenges for archaeology. PNAS 111:879–80 [Google Scholar]
  50. Kirchner S, Jablonka P. 2001. Virtual archaeology: VR based knowledge management and marketing in archaeology first results—next steps. Proc. Conf. Virtual Reality, Archeol., Cult. Herit.235–40 Glyfada, Greece: Assoc. Comput. Mach. (ACM)
  51. Kolomenkin M, Shimshoni I, Tal A. 2009. On edge detection on surfaces Presented at Comp. Vis. Pattern Recognit. (CVPR) Worksh., IEEE Comp. Soc. Conf., June 20–26, Miami, Fla.
  52. Kuhn TS. 1962. The Structure of Scientific Revolutions Chicago: Univ. Chicago Press
  53. Lambers K, Eisenbeiss H, Sauerbier M, Kupferschmidt D, Gaisecker T. et al. 2007. Combining photogrammetry and laser scanning for the recording and modelling of the Late Intermediate Period site of Pinchango Alto, Palpa, Peru. J. Archaeol. Sci. 34:1702–12 [Google Scholar]
  54. Lerma JL, Navarro S, Cabrelles M, Seguí AE, Hernández D. 2013. Automatic orientation and 3D modelling from markerless rock art imagery. ISPRS J. Photogramm. Remote Sens. 76:64–75 [Google Scholar]
  55. Lerma JL, Navarro S, Cabrelles M, Villaverde V. 2010. Terrestrial laser scanning and close range photogrammetry for 3D archaeological documentation: the Upper Palaeolithic Cave of Parpalló as a case study. J. Archaeol. Sci. 37:499–507 [Google Scholar]
  56. Lerma JL, Navarro S, Seguí AE, Cabrelles M. 2014. Range-based versus automated markerless image-based techniques for rock art documentation. Photogramm. Rec. 29:30–48 [Google Scholar]
  57. Levy TE, Smith NG, Najjar M, DeFanti TA, Lin AY-M, Keuster F. 2012. Cyber-Archaeology in the Holy Land: The Future of the Past San Diego: Univ. Calif. Inst. Telecommun. Inf. Technol. (Calit2)
  58. Lin SCH, Douglass MJ, Holdaway SJ, Floyd B. 2010. The application of 3D laser scanning technology to the assessment of ordinal and mechanical cortex quantification in lithic analysis. J. Archaeol. Sci. 37:694–702 [Google Scholar]
  59. Llobera M. 2011. Archaeological visualization: towards an archaeological information science (AISc). J. Archaeol. Method Theory 18:193–223 [Google Scholar]
  60. Lobb M, Krawiec K, Howard AJ, Gearey BR, Chapman HP. 2010. A new approach to recording and monitoring wet-preserved archaeological wood using three-dimensional laser scanning. J. Archaeol. Sci. 37:2995–99 [Google Scholar]
  61. Lovita R, McPherron SP. 2011. The handaxe reloaded: a morphometric reassessment of Acheulian and Middle Paleolithic handaxes. J. Hum. Evol. 61:61–74 [Google Scholar]
  62. Lycett SJ, von Cramon-Taubadel N. 2013. A 3D morphometric analysis of surface geometry in Levallois cores: patterns of stability and variability across regions and their implications. J. Archaeol. Sci. 40:1508–17 [Google Scholar]
  63. Lycett SJ, von Cramon-Taubadel N, Foley RA. 2006. A crossbeam co-ordinate caliper for the morphometric analysis of lithic nuclei: a description, test and empirical examples of application. J. Archaeol. Sci. 33:847–61 [Google Scholar]
  64. Magnani M. 2014. Three-dimensional alternatives to lithic illustration. Adv. Archaeol. Pract. 2:285–97 [Google Scholar]
  65. Mara H, Sablatnig R. 2005. Semiautomatic and automatic profile generation for archaeological fragments Presented at Comp. Vis. Winter Worksh. (CVWW05), 10th, Feb. 2005, Zell an der Pram, Austria
  66. Menze BH, Ur JA. 2012. Mapping patterns of long-term settlement in Northern Mesopotamia at a large scale. PNAS 109:E778–87 [Google Scholar]
  67. Niven L, Steele TE, Finke H, Gernat T, Hublin J-J. 2009. Virtual skeletons: using a structured light scanner to create a 3D faunal comparative collection. J. Archaeol. Sci. 36:2018–23 [Google Scholar]
  68. Olson BR, Placchetti RA, Quartermaine J, Killebrew AE. 2013. The Tel Akko Total Archaeology Project (Akko, Israel): assessing the suitability of multi-scale 3D field recording in archaeology. J. Field Archaeol. 38:244–62 [Google Scholar]
  69. Picin A, Vaquero M, Weniger G-C, Carbonell E. 2014. Flake morphologies and patterns of core configuration at the Abric Romaní rock-shelter: a geometric morphometric approach. Quat. Int. 350:84–93 [Google Scholar]
  70. Pingel TJ, Clarke K, Ford A. 2015. Bonemapping: a LiDAR processing and visualization technique in support of archaeology under the canopy. Cartogr. Geogr. Inf. Sci. 42:18–26 [Google Scholar]
  71. Rajani MB, Patra SK, Verma M. 2009. Space observation for generating 3D perspective views and its implication to the study of the archaeological site of Badami in India. J. Cult. Heritage 10:Suppl. 1e20–26 [Google Scholar]
  72. Reilly P. 1991. Towards a virtual archaeology. CAA 18133–39 Oxford: Archaeopress [Google Scholar]
  73. Richardson E, Grosman L, Smilansky U, Werman M. 2013. Extracting scar and ridge features from 3D-scanned lithic artifacts. Archaeology in the Digital Era G Earl, T Sly, A Chrysanthi, P Murrieta-Flores, C Papadopoulos , et al., pp. 83–92 Amsterdam: Amst. Univ. Press [Google Scholar]
  74. Richardson E, Werman M. 2014. Efficient classification using the Euler characteristic. Pattern Recognit. Lett. 49:99–106 [Google Scholar]
  75. Riddle ATR, Chazan M. 2014. Stone tools from the inside out: radial point distribution. World Archaeol. 46:123–36 [Google Scholar]
  76. Robson Brown KA, Chalmers A, Saigol T, Green C, D'Errico F. 2001. An automated laser scan survey of the Upper Palaeolithic rock shelter of Cap Blanc. J. Archaeol. Sci. 28:283–89 [Google Scholar]
  77. Romero BE, Bray TL. 2014. Analytical applications of fine-scale terrestrial lidar at the imperial Inca site of Caranqui, northern highland Ecuador. World Archaeol. 46:25–42 [Google Scholar]
  78. Roosevelt CH, Cobb P, Moss E, Olson BR, Ünlüsoy S. 2015. Excavation is destruction digitization: advances in archaeological practice. J. Field Archaeol. 40:325–46 [Google Scholar]
  79. Saragusti I, Karasik A, Sharon I, Smilansky U. 2005. Quantitative analysis of shape attributes based on contours and section profiles in artifact analysis. J. Archaeol. Sci. 32:841–53 [Google Scholar]
  80. Sholts SB, Stanford DJ, Flores LM, Wärmländer SKTS. 2012. Flake scar patterns of Clovis points analyzed with a new digital morphometrics approach: evidence for direct transmission of technological knowledge across early North America. J. Archaeol. Sci. 39:3018–26 [Google Scholar]
  81. Shott M. 2014. Digitizing archaeology: a subtle revolution in analysis. World Archaeol. 46:1–9 [Google Scholar]
  82. Smith ME, Peregrine P. 2011. Approaches to comparative analysis in archaeology. Approaches to Comparative Analysis in Archaeology ME Smith 4–19 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  83. Susman RL. 1994. Fossil evidence for early hominid tool use. Science 265:1570–73 [Google Scholar]
  84. Terhune CE, Kimbel WH, Lockwood CA. 2007. Variation and diversity in Homo erectus: a 3D geometric morphometric analysis of the temporal bone. J. Hum. Evol. 53:41–60 [Google Scholar]
  85. Thulman DK. 2012. Discriminating Paleoindian point types from Florida using landmark geometric morphometrics. J. Archaeol. Sci. 39:1599–607 [Google Scholar]
  86. Verhoeven GJJ. 2009. Providing an archaeological bird's-eye view—an overall picture of ground-based means to execute low-altitude aerial photography (LAAP) in archaeology. Archaeol. Prospect. 16:233–49 [Google Scholar]
  87. Weber GW. 2014. Another link between archaeology and anthropology: virtual anthropology. Digit. Appl. Archaeol. Cult. Herit. 1:3–11 [Google Scholar]
  88. Whallon R Jr. 1972. The computer in archaeology: a critical survey. Comput. Humanit. 7:129–45 [Google Scholar]
  89. Zaidner Y, Grosman L. 2015. Middle Paleolithic sidescrapers were resharped or recycled? A view from Nesher Ramla, Israel. Quat. Int. 361:178–87 [Google Scholar]
  90. Zhang X, Blaas J, Botha C, Reischig P, Bravin A, Dik J. 2012. Process for the 3D virtual reconstruction of a microcultural heritage artifact obtained by synchrotron radiation CT technology using open source and free software. J. Cult. Herit. 13:221–25 [Google Scholar]
  91. Zubrow EB. 2006. Digital archaeology: the historical context. See Evans & Daly 2006 10–31
/content/journals/10.1146/annurev-anthro-102215-095946
Loading
/content/journals/10.1146/annurev-anthro-102215-095946
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error